53 research outputs found
Chlamydia trachomatis infection in early neonatal period
BACKGROUND: The clinical characteristics of Chlamydia trachomatis respiratory tract infections in Japanese neonates were investigated. METHODS: Clinical, laboratory and microbiological characteristics of five infants with pneumonia due to C. trachomatis in early neonatal period were analyzed. RESULTS: Only C. trachomatis was identified in 4 infants. Both C. trachomatis and cytomegalovirus was identified in one. Wheezing, tachypnea and cyanosis were common in infants. Mothers of five infants had negative chlamydial EIAs at 20 weeks of gestation. CONCLUSIONS: We identified five cases of C. trachomatis respiratory tract infections in early neonatal period with the possibility of intrauterine infection. Targeted screening, early diagnosis, and effective treatment of perinatal and neonatal chlamydial infections seems to be necessar
Chlamydia trachomatis infection during pregnancy associated with preterm delivery: a population-based prospective cohort study
Chlamydia trachomatis infection is the most prevalent bacterial sexually transmitted infection and may influence pregnancy outcome. This study was conducted to assess the effect of chlamydial infection during pregnancy on premature delivery and birthweight. Pregnant women attending a participating midwifery practice or antenatal clinic between February 2003 and January 2005 were eligible for the study. From 4,055 women self-administered questionnaires and urine samples, tested by PCR, were analysed for C. trachomatis infection. Pregnancy outcomes were obtained from midwives and hospital registries. Gestational ages and birthweights were analysed for 3,913 newborns. The C. trachomatis prevalence was 3.9%, but varied by age and socio-economic background. Chlamydial infection was, after adjustment for potential confounders, associated with preterm delivery before 32 weeks (OR 4.35 [95% CI 1.3, 15.2]) and 35 weeks gestation (OR 2.66 [95% CI 1.1, 6.5]), but not with low birthweight. Of all deliveries before 32 weeks and 35 weeks gestation 14.9% [95% CI 4.5, 39.5] and 7.4% [95% CI 2.5, 20.1] was attributable to C. trachomatis infection. Chlamydia trachomatis infection contributes significantly to early premature delivery and should be considered a public health problem, especially in young women and others at increased risk of C. trachomatis infection
Effect of the Aedes fluviatilis saliva on the development of Plasmodium gallinaceum infection in Gallus (gallus) domesticus
Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation.
Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction
Neuronal hyperactivity disturbs ATP microgradients, impairs microglial motility, and reduces phagocytic receptor expression triggering apoptosis/microglial phagocytosis uncoupling
Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance after seizures. These results demonstrate that the efficiency of microglial phagocytosis critically affects the dynamics of apoptosis and urge to routinely assess the microglial phagocytic efficiency in neurodegenerative disorders
The molecular logic of endocannabinoid signalling
The endocannabinoids are a family of lipid messengers that engage the cell surface receptors that are targeted by Δ9-tetrahydrocannabinol, the active principle in marijuana (Cannabis). They are made on demand through cleavage of membrane precursors and are involved in various short-range signalling processes. In the brain, they combine with CB1 cannabinoid receptors on axon terminals to regulate ion channel activity and neurotransmitter release. Their ability to modulate synaptic efficacy has a wide range of functional consequences and provides unique therapeutic possibilities. © 2003, Nature Publishing Group. All rights reserved
HIV and Cervical Cancer: Screening and Management at U.S. Gynecologic Oncology Fellowship Institutions
- …
