18 research outputs found
Measurement of finite-frequency current statistics in a single-electron transistor
Electron transport in nano-scale structures is strongly influenced by the
Coulomb interaction which gives rise to correlations in the stream of charges
and leaves clear fingerprints in the fluctuations of the electrical current. A
complete understanding of the underlying physical processes requires
measurements of the electrical fluctuations on all time and frequency scales,
but experiments have so far been restricted to fixed frequency ranges as
broadband detection of current fluctuations is an inherently difficult
experimental procedure. Here we demonstrate that the electrical fluctuations in
a single electron transistor (SET) can be accurately measured on all relevant
frequencies using a nearby quantum point contact for on-chip real-time
detection of the current pulses in the SET. We have directly measured the
frequency-dependent current statistics and hereby fully characterized the
fundamental tunneling processes in the SET. Our experiment paves the way for
future investigations of interaction and coherence induced correlation effects
in quantum transport.Comment: 7 pages, 3 figures, published in Nature Communications (open access
