202 research outputs found
The empirical analysis of non-problematic video gaming and cognitive skills: a systematic review
Videogames have become one of the most popular leisure activities worldwide, including multiple game genres with different characteristics and levels of involvement required. Although a small minority of excessive players suffer detrimental consequences including impairment of several cognitive skills (e.g., inhibition, decision-making), it has also been demonstrated that playing videogames can improve different cognitive skills. Therefore, the current paper systematically reviewed the empirical studies experimentally investigating the positive impact of videogames on cognitive skills. Following a number of inclusion and exclusion criteria, a total of 32 papers were identified as empirically investigating three specific skills: taskswitching (eight studies), attentional control (22 studies), and sub-second time perception (two studies). Results demonstrated that compared to control groups, non-problematic use of videogames can lead to improved task-switching, more effective top-down attentional control and processing speed and increased sub-second time perception. Two studies highlighted the impact of gaming on cognitive skills differs depends upon game genre. The studies reviewed suggest that videogame play can have a positive impact on cognitive processes for players
WalkMore: a randomized controlled trial of pedometer-based interventions differing on intensity messages
Pedometer-based programs have elicited increased walking behaviors associated with improvements in blood pressure in sedentary/low active postmenopausal women, a population at increased risk of cardiovascular disease. Such programs typically encourage increasing the volume of physical activity with little regard for its intensity. Recent advances in commercially available pedometer technology now permit tracking of both steps/day and time in moderate (or greater) intensity physical activity on a daily basis. It is not known whether the dual message to increase steps/day while also increasing time spent at higher intensity walking will elicit additional improvements in blood pressure relative to a message to only focus on increasing steps/day. The purpose of this paper is to present the rationale, study design, and protocols employed in WalkMore, a 3-arm 3-month blinded and randomized controlled trial (RCT) designed to compare the effects of two community pedometer-based walking interventions (reflecting these separate and combined messages) relative to a control group on blood pressure in sedentary/low active post-menopausal women, a population at increased risk of cardiovascular disease. 120 sedentary/low active post-menopausal women (45-74 years of age) will be randomly assigned (computer-generated) to 1 of 3 groups: A) 10,000 steps/day (with no guidance on walking intensity/speed/cadence; BASIC intervention, n = 50); B) 10,000 steps/day and at least 30 minutes in moderate intensity (i.e., a cadence of at least 100 steps/min; ENHANCED intervention, n = 50); or a Control group (n = 20). An important strength of the study is the strict control and quantification of the pedometer-based physical activity interventions. The primary outcome is systolic blood pressure. Secondary outcomes include diastolic blood pressure, anthropometric measurements, fasting blood glucose and insulin, flow mediated dilation, gait speed, and accelerometer-determined physical activity and sedentary behavior. This study can make important contributions to our understanding of the relative benefits that walking volume and/or intensity may have on blood pressure in a population at risk of cardiovascular disease. ClinicalTrials.gov Record NCT01519583, January 18, 2012
Exploring the relationship between video game expertise and fluid intelligence
Hundreds of millions of people play intellectually-demanding video games every day. What does individual performance on these games tell us about cognition? Here, we describe two studies that examine the potential link between intelligence and performance in one of the most popular video games genres in the world (Multiplayer Online Battle Arenas: MOBAs). In the first study, we show that performance in the popular MOBA League of Legends' correlates with fluid intelligence as measured under controlled laboratory conditions. In the second study, we also show that the age profile of performance in the two most widely-played MOBAs (League of Legends and DOTA II) matches that of raw fluid intelligence. We discuss and extend previous videogame literature on intelligence and videogames and suggest that commercial video games can be useful as 'proxy' tests of cognitive performance at a global population level
Action video game playing is associated with improved visual sensitivity, but not alterations in visual sensory memory
Action video game playing has been experimentally linked to a number of perceptual and cognitive improvements. These benefits are captured through a wide range of psychometric tasks and have led to the proposition that action video game experience may promote the ability to extract statistical evidence from sensory stimuli. Such an advantage could arise from a number of possible mechanisms: improvements in visual sensitivity, enhancements in the capacity or duration for which information is retained in visual memory, or higher-level strategic use of information for decision making. The present study measured the capacity and time course of visual sensory memory using a partial report performance task as a means to distinguish between these three possible mechanisms. Sensitivity measures and parameter estimates that describe sensory memory capacity and the rate of memory decay were compared between individuals who reported high evels and low levels of action video game experience. Our results revealed a uniform increase in partial report accuracy at all stimulus-to-cue delays for action video game players but no difference in the rate or time course of the memory decay. The present findings suggest that action video game playing may be related to enhancements in the initial sensitivity to visual stimuli, but not to a greater retention of information in iconic memory buffers
Contribution of discourse and morphosyntax skills to reading comprehension in Chinese dyslexic and typically developing children
This study aimed at identifying important skills for reading comprehension in Chinese dyslexic children and their typically developing counterparts matched on age (CA controls) or reading level (RL controls). The children were assessed on Chinese reading comprehension, cognitive, and reading-related skills. Results showed that the dyslexic children performed significantly less well than the CA controls but similarly to RL controls in most measures. Results of multiple regression analyses showed that word-level reading-related skills like oral vocabulary and word semantics were found to be strong predictors of reading comprehension among typically developing junior graders and dyslexic readers of senior grades, whereas morphosyntax, a text-level skill, was most predictive for typically developing senior graders. It was concluded that discourse and morphosyntax skills are particularly important for reading comprehension in the non-inflectional and topic-prominent Chinese system
Learning to generalise but not segment an artificial language at 17 months predicts children’s language skills 3 years later
We investigated whether learning an artificial language at 17 months was predictive of children’s natural language vocabulary and grammar skills at 54 months. Children at 17 months listened to an artificial language containing non-adjacent dependencies, and were then tested on their learning to segment and to generalise the structure of the language. At 54 months, children were then tested on a range of standardised natural language tasks that assessed receptive and expressive vocabulary and grammar. A structural equation model demonstrated that learning the artificial language generalisation at 17 months predicted language abilities – a composite of vocabulary and grammar skills – at 54 months, whereas artificial language segmentation at 17 months did not predict language abilities at this age. Artificial language learning tasks – especially those that probe grammar learning – provide a valuable tool for uncovering the mechanisms driving children’s early language development
Protocol for a randomized controlled study of Iyengar yoga for youth with irritable bowel syndrome
<p>Abstract</p> <p>Introduction</p> <p>Irritable bowel syndrome affects as many as 14% of high school-aged students. Symptoms include discomfort in the abdomen, along with diarrhea and/or constipation and other gastroenterological symptoms that can significantly impact quality of life and daily functioning. Emotional stress appears to exacerbate irritable bowel syndrome symptoms suggesting that mind-body interventions reducing arousal may prove beneficial. For many sufferers, symptoms can be traced to childhood and adolescence, making the early manifestation of irritable bowel syndrome important to understand. The current study will focus on young people aged 14-26 years with irritable bowel syndrome. The study will test the potential benefits of Iyengar yoga on clinical symptoms, psychospiritual functioning and visceral sensitivity. Yoga is thought to bring physical, psychological and spiritual benefits to practitioners and has been associated with reduced stress and pain. Through its focus on restoration and use of props, Iyengar yoga is especially designed to decrease arousal and promote psychospiritual resources in physically compromised individuals. An extensive and standardized teacher-training program support Iyengar yoga's reliability and safety. It is hypothesized that yoga will be feasible with less than 20% attrition; and the yoga group will demonstrate significantly improved outcomes compared to controls, with physiological and psychospiritual mechanisms contributing to improvements.</p> <p>Methods/Design</p> <p>Sixty irritable bowel syndrome patients aged 14-26 will be randomly assigned to a standardized 6-week twice weekly Iyengar yoga group-based program or a wait-list usual care control group. The groups will be compared on the primary clinical outcomes of irritable bowel syndrome symptoms, quality of life and global improvement at post-treatment and 2-month follow-up. Secondary outcomes will include visceral pain sensitivity assessed with a standardized laboratory task (water load task), functional disability and psychospiritual variables including catastrophizing, self-efficacy, mood, acceptance and mindfulness. Mechanisms of action involved in the proposed beneficial effects of yoga upon clinical outcomes will be explored, and include the mediating effects of visceral sensitivity, increased psychospiritual resources, regulated autonomic nervous system responses and regulated hormonal stress response assessed via salivary cortisol.</p> <p>Trial registration</p> <p>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01107977">NCT01107977</a>.</p
cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation
Background
Appropriate control of mitochondrial function, morphology and biogenesis are crucial determinants of the general health of eukaryotic cells. It is therefore imperative that we understand the mechanisms that co-ordinate mitochondrial function with environmental signaling systems. The regulation of yeast mitochondrial function in response to nutritional change can be modulated by PKA activity. Unregulated PKA activity can lead to the production of mitochondria that are prone to the production of ROS, and an apoptotic form of cell death.
Results
We present evidence that mitochondria are sensitive to the level of cAMP/PKA signaling and can respond by modulating levels of respiratory activity or committing to self execution. The inappropriate activation of one of the yeast PKA catalytic subunits, Tpk3p, is sufficient to commit cells to an apoptotic death through transcriptional changes that promote the production of dysfunctional, ROS producing mitochondria. Our data implies that cAMP/PKA regulation of mitochondrial function that promotes apoptosis engages the function of multiple transcription factors, including HAP4, SOK2 and SCO1.
Conclusions
We propose that in yeast, as is the case in mammalian cells, mitochondrial function and biogenesis are controlled in response to environmental change by the concerted regulation of multiple transcription factors. The visualization of cAMP/TPK3 induced cell death within yeast colonies supports a model that PKA regulation plays a physiological role in coordinating respiratory function and cell death with nutritional status in budding yeast
- …
