13 research outputs found
Insertion of a xylanase in xylose binding protein results in a xylose-stimulated xylanase
Impact of High Seas Closure on Food Security in Low Income Fish Dependent Countries.
We investigate how high seas closure will affect the availability of commonly consumed food fish in 46 fish reliant, and/or low income countries. Domestic consumption of straddling fish species (fish that would be affected by high seas closure) occurred in 54% of the assessed countries. The majority (70%) of countries were projected to experience net catch gains following high seas closure. However, countries with projected catch gains and that also consumed the straddling fish species domestically made up only 37% of the assessed countries. In contrast, much fewer countries (25%) were projected to incur net losses from high seas closure, and of these, straddling species were used domestically in less than half (45%) of the countries. Our findings suggest that, given the current consumption patterns of straddling species, high seas closure may only directly benefit the supply of domestically consumed food fish in a small number of fish reliant and/or low income countries. In particular, it may not have a substantial impact on improving domestic fish supply in countries with the greatest need for improved access to affordable fish, as only one third of this group used straddling fish species domestically. Also, food security in countries with projected net catch gains but where straddling fish species are not consumed domestically may still benefit indirectly via economic activities arising from the increased availability of non-domestically consumed straddling fish species following high seas closure. Consequently, this study suggests that high seas closure can potentially improve marine resource sustainability as well as contribute to human well-being in some of the poorest and most fish dependent countries worldwide. However, caution is required because high seas closure may also negatively affect fish availability in countries that are already impoverished and fish insecure
Using xanthated Lagenaria vulgaris shell biosorbent for removal of Pb(II) ions from wastewater
Chemically modified Lagenaria vulgaris shell was applied as a new sorbent for the removal of lead (II) ions from aqueous solution in a batch process mode. The influence of contact time, initial concentration of lead (II) ions, initial pH value, biosorbent dosage, particle size and stirring speed on the removal efficiency was evaluated. Biosorbent characterization was performed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Four kinetic models (pseudo-first order, pseudo-second order, Elovich model and Intraparticle diffusion model) were used to determine the kinetic parameters. The experimental results were fitted to the Langmuir, Freundlich, Dubinin–Radushkevich and Temkin models of isotherm. Pseudo-second order kinetic model and Langmuir isotherm model best fitted the experimental data. Sorption process is obtained to be fast and equilibrium was attained within 40 min of contact time. The maximum sorption capacity was 33.21 mg g−1. Biosorption was highly pH-dependent where optimum pH was found to be 5. The results of FTIR and SEM analysis showed the presence of new sulfur functional groups. This study indicated that xanthated Lagenaria vulgaris shell could be used as an effective and low-cost biosorbent for the removal of lead (II) ions from aqueous solution
