27,680 research outputs found
Miscellaneous studies
MISCELLANEOUS
STUDIES, which includes the following papers: "Geology of the Area
in and Around the Jim Woodruff Reservoir" by Charles W. Hendry, Jr.
and J. William Yon, Jr.; "Phosphate Concentrations near Bird Rookeries
in South Florida" by Dr. Ernest H. Lund, Department of Geology,
Florida State University; and "An Analysis of Ochlockonee River Channel
Sediments" by Dr. Ernest H. Lund, Associate Professor and Patrick
C. Haley, Graduate Assistant, Department of Geology, Florida State
University.
(PDF contains 81 pages
Ballerina - Pirouettes in Search of Gamma Bursts
The cosmological origin of gamma ray bursts has now been established with
reasonable certainty. Many more bursts will need to be studied to establish the
typical distance scale, and to map out the large diversity in properties which
have been indicated by the first handful of events. We are proposing Ballerina,
a small satellite to provide accurate positions and new data on the gamma-ray
bursts. We anticipate a detection rate an order of magnitude larger than
obtained from Beppo-SAX.Comment: A&AS in press, proceedings of the Workshop "Gamma Ray Bursts in the
Afterglow Era" in Rome, November 199
Adaptive Phase Measurements in Linear Optical Quantum Computation
Photon counting induces an effective nonlinear optical phase shift on certain
states derived by linear optics from single photons. Although this no
nlinearity is nondeterministic, it is sufficient in principle to allow scalable
linear optics quantum computation (LOQC). The most obvious way to encode a
qubit optically is as a superposition of the vacuum and a single photon in one
mode -- so-called "single-rail" logic. Until now this approach was thought to
be prohibitively expensive (in resources) compared to "dual-rail" logic where a
qubit is stored by a photon across two modes. Here we attack this problem with
real-time feedback control, which can realize a quantum-limited phase
measurement on a single mode, as has been recently demonstrated experimentally.
We show that with this added measurement resource, the resource requirements
for single-rail LOQC are not substantially different from those of dual-rail
LOQC. In particular, with adaptive phase measurements an arbitrary qubit state
can be prepared deterministically
Modelling large motion events in fMRI studies of patients with epilepsy
EEG-correlated fMRI can provide localisation information on the generators of epileptiform discharges in patients with focal epilepsy. To increase the technique's clinical potential, it is important to consider ways of optimising the yield of each experiment while minimizing the risk of false-positive activation. Head motion can lead to severe image degradation and result in false-positive activation and is usually worse in patients than in healthy subjects. We performed general linear model fMRI data analysis on simultaneous EEG–fMRI data acquired in 34 cases with focal epilepsy. Signal changes associated with large inter-scan motion events (head jerks) were modelled using modified design matrices that include ‘scan nulling’ regressors. We evaluated the efficacy of this approach by mapping the proportion of the brain for which F-tests across the additional regressors were significant. In 95% of cases, there was a significant effect of motion in 50% of the brain or greater; for the scan nulling effect, the proportion was 36%; this effect was predominantly in the neocortex. We conclude that careful consideration of the motion-related effects in fMRI studies of patients with epilepsy is essential and that the proposed approach can be effective
Conditional Production of Superpositions of Coherent States with Inefficient Photon Detection
It is shown that a linear superposition of two macroscopically
distinguishable optical coherent states can be generated using a single photon
source and simple all-optical operations. Weak squeezing on a single photon,
beam mixing with an auxiliary coherent state, and photon detecting with
imperfect threshold detectors are enough to generate a coherent state
superposition in a free propagating optical field with a large coherent
amplitude () and high fidelity (). In contrast to all
previous schemes to generate such a state, our scheme does not need photon
number resolving measurements nor Kerr-type nonlinear interactions.
Furthermore, it is robust to detection inefficiency and exhibits some
resilience to photon production inefficiency.Comment: Some important new results added, to appear in Phys.Rev.A (Rapid
Communication
Ultrasound-induced acoustophoretic motion of microparticles in three dimensions
We derive analytical expressions for the three-dimensional (3D)
acoustophoretic motion of spherical microparticles in rectangular
microchannels. The motion is generated by the acoustic radiation force and the
acoustic streaming-induced drag force. In contrast to the classical theory of
Rayleigh streaming in shallow, infinite, parallel-plate channels, our theory
does include the effect of the microchannel side walls. The resulting
predictions agree well with numerics and experimental measurements of the
acoustophoretic motion of polystyrene spheres with nominal diameters of 0.537
um and 5.33 um. The 3D particle motion was recorded using astigmatism particle
tracking velocimetry under controlled thermal and acoustic conditions in a
long, straight, rectangular microchannel actuated in one of its transverse
standing ultrasound-wave resonance modes with one or two half-wavelengths. The
acoustic energy density is calibrated in situ based on measurements of the
radiation dominated motion of large 5-um-diam particles, allowing for
quantitative comparison between theoretical predictions and measurements of the
streaming induced motion of small 0.5-um-diam particles.Comment: 13 pages, 8 figures, Revtex 4.
Magnetic activity, differential rotation and dynamo action in the pulsating F9IV star KIC 5955122
We present photometric spot modeling of the nearly four-year long light-curve
of the Kepler target KIC 5955122 in terms of persisting dark circular surface
features. With a Bayesian technique, we produced a plausible surface map that
shows dozens of small spots. After some artifacts are removed, the residuals
are at \,mmag. The shortest rotational period found is days. The equator-to-pole extrapolated differential rotation is rad/d. The spots are roughly half as bright as the unperturbed stellar
photosphere. Spot latitudes are restricted to the zone latitude.
There is no indication for any near-pole spots. In addition, the p-mode
pulsations enabled us to determine the evolutionary status of the star, the
extension of the convective zone, and its radius and mass. We discuss the
possibility that the clear signature of active regions in the light curve of
the F9IV star KIC 5955122 is produced by a flux-transport dynamo action at the
base of the convection zone. In particular, we argue that this star has evolved
from an active to a quiet status during the Q0--Q16 period of observation, and
we predict, according to our dynamo model, that the characteristic activity
cycle is of the order of the solar one.Comment: 9 pages, 12 figures, to be published on A&
- …
