27,680 research outputs found

    Miscellaneous studies

    Get PDF
    MISCELLANEOUS STUDIES, which includes the following papers: "Geology of the Area in and Around the Jim Woodruff Reservoir" by Charles W. Hendry, Jr. and J. William Yon, Jr.; "Phosphate Concentrations near Bird Rookeries in South Florida" by Dr. Ernest H. Lund, Department of Geology, Florida State University; and "An Analysis of Ochlockonee River Channel Sediments" by Dr. Ernest H. Lund, Associate Professor and Patrick C. Haley, Graduate Assistant, Department of Geology, Florida State University. (PDF contains 81 pages

    Ballerina - Pirouettes in Search of Gamma Bursts

    Get PDF
    The cosmological origin of gamma ray bursts has now been established with reasonable certainty. Many more bursts will need to be studied to establish the typical distance scale, and to map out the large diversity in properties which have been indicated by the first handful of events. We are proposing Ballerina, a small satellite to provide accurate positions and new data on the gamma-ray bursts. We anticipate a detection rate an order of magnitude larger than obtained from Beppo-SAX.Comment: A&AS in press, proceedings of the Workshop "Gamma Ray Bursts in the Afterglow Era" in Rome, November 199

    Adaptive Phase Measurements in Linear Optical Quantum Computation

    Get PDF
    Photon counting induces an effective nonlinear optical phase shift on certain states derived by linear optics from single photons. Although this no nlinearity is nondeterministic, it is sufficient in principle to allow scalable linear optics quantum computation (LOQC). The most obvious way to encode a qubit optically is as a superposition of the vacuum and a single photon in one mode -- so-called "single-rail" logic. Until now this approach was thought to be prohibitively expensive (in resources) compared to "dual-rail" logic where a qubit is stored by a photon across two modes. Here we attack this problem with real-time feedback control, which can realize a quantum-limited phase measurement on a single mode, as has been recently demonstrated experimentally. We show that with this added measurement resource, the resource requirements for single-rail LOQC are not substantially different from those of dual-rail LOQC. In particular, with adaptive phase measurements an arbitrary qubit state α0+β1\alpha \ket{0} + \beta\ket{1} can be prepared deterministically

    Modelling large motion events in fMRI studies of patients with epilepsy

    Get PDF
    EEG-correlated fMRI can provide localisation information on the generators of epileptiform discharges in patients with focal epilepsy. To increase the technique's clinical potential, it is important to consider ways of optimising the yield of each experiment while minimizing the risk of false-positive activation. Head motion can lead to severe image degradation and result in false-positive activation and is usually worse in patients than in healthy subjects. We performed general linear model fMRI data analysis on simultaneous EEG–fMRI data acquired in 34 cases with focal epilepsy. Signal changes associated with large inter-scan motion events (head jerks) were modelled using modified design matrices that include ‘scan nulling’ regressors. We evaluated the efficacy of this approach by mapping the proportion of the brain for which F-tests across the additional regressors were significant. In 95% of cases, there was a significant effect of motion in 50% of the brain or greater; for the scan nulling effect, the proportion was 36%; this effect was predominantly in the neocortex. We conclude that careful consideration of the motion-related effects in fMRI studies of patients with epilepsy is essential and that the proposed approach can be effective

    Conditional Production of Superpositions of Coherent States with Inefficient Photon Detection

    Get PDF
    It is shown that a linear superposition of two macroscopically distinguishable optical coherent states can be generated using a single photon source and simple all-optical operations. Weak squeezing on a single photon, beam mixing with an auxiliary coherent state, and photon detecting with imperfect threshold detectors are enough to generate a coherent state superposition in a free propagating optical field with a large coherent amplitude (α>2\alpha>2) and high fidelity (F>0.99F>0.99). In contrast to all previous schemes to generate such a state, our scheme does not need photon number resolving measurements nor Kerr-type nonlinear interactions. Furthermore, it is robust to detection inefficiency and exhibits some resilience to photon production inefficiency.Comment: Some important new results added, to appear in Phys.Rev.A (Rapid Communication

    Robin S. Dods : the life and work of a distinguished Queensland architect

    Get PDF

    The origin and development of co-operative sugar mills in Queensland

    Get PDF

    Ultrasound-induced acoustophoretic motion of microparticles in three dimensions

    Get PDF
    We derive analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels. The motion is generated by the acoustic radiation force and the acoustic streaming-induced drag force. In contrast to the classical theory of Rayleigh streaming in shallow, infinite, parallel-plate channels, our theory does include the effect of the microchannel side walls. The resulting predictions agree well with numerics and experimental measurements of the acoustophoretic motion of polystyrene spheres with nominal diameters of 0.537 um and 5.33 um. The 3D particle motion was recorded using astigmatism particle tracking velocimetry under controlled thermal and acoustic conditions in a long, straight, rectangular microchannel actuated in one of its transverse standing ultrasound-wave resonance modes with one or two half-wavelengths. The acoustic energy density is calibrated in situ based on measurements of the radiation dominated motion of large 5-um-diam particles, allowing for quantitative comparison between theoretical predictions and measurements of the streaming induced motion of small 0.5-um-diam particles.Comment: 13 pages, 8 figures, Revtex 4.

    Magnetic activity, differential rotation and dynamo action in the pulsating F9IV star KIC 5955122

    Full text link
    We present photometric spot modeling of the nearly four-year long light-curve of the Kepler target KIC 5955122 in terms of persisting dark circular surface features. With a Bayesian technique, we produced a plausible surface map that shows dozens of small spots. After some artifacts are removed, the residuals are at ±0.16\pm 0.16\,mmag. The shortest rotational period found is P=16.4±0.2P = 16.4 \pm 0.2 days. The equator-to-pole extrapolated differential rotation is 0.25±0.020.25 \pm 0.02 rad/d. The spots are roughly half as bright as the unperturbed stellar photosphere. Spot latitudes are restricted to the zone ±60\pm 60^\circ latitude. There is no indication for any near-pole spots. In addition, the p-mode pulsations enabled us to determine the evolutionary status of the star, the extension of the convective zone, and its radius and mass. We discuss the possibility that the clear signature of active regions in the light curve of the F9IV star KIC 5955122 is produced by a flux-transport dynamo action at the base of the convection zone. In particular, we argue that this star has evolved from an active to a quiet status during the Q0--Q16 period of observation, and we predict, according to our dynamo model, that the characteristic activity cycle is of the order of the solar one.Comment: 9 pages, 12 figures, to be published on A&
    corecore