7,318 research outputs found
Experimental and theoretical lifetimes and transition probabilities in Sb I
We present experimental atomic lifetimes for 12 levels in Sb I, out of which
seven are reported for the first time. The levels belong to the 5p(P)6s
P, P and 5p(P)5d P, F and F terms. The
lifetimes were measured using time-resolved laser-induced fluorescence. In
addition, we report new calculations of transition probabilities in Sb I using
a Multiconfigurational Dirac-Hartree-Fock method. The physical model being
tested through comparisons between theoretical and experimental lifetimes for
5d and 6s levels. The lifetimes of the 5d F levels (19.5,
7.8 and 54 ns, respectively) depend strongly on the -value. This is
explained by different degrees of level mixing for the different levels in the
F term.Comment: 10 page
The moisture effect on 223Ra and 224Ra measurements using Mn-cartridges
Important processes in the ocean can be evaluated with radioactive nuclides, including radium isotopes. An approach for quantifying radium isotopes in seawater with in-situ pumps has been developed in advance of the GEOTRACES program [1]. Precise measurements of 223Ra and 224Ra by means of the delayed coincidence counting system (RaDeCC) [2] are dependent on the moisture content of the medium [3]. In order to verify the optimum moisture content for this new approach, a set of measurements of the Mn-cartridge standards under different moisture conditions was conducted, as this was done previously for acrylic fiber. At a time, an amount of water equivalent to 5% of the cartridges weight was added, and the activities were determined.
The variation of 224Ra activity occurs mainly between 0 to 15% of humidity. Under moisture conditions higher than 15%, the emanation efficiency reaches an optimum plateau until 100% of moisture. This result differs slightly from those found for 224Ra measurements using the acrylic fiber (plateau from 30 to 100 %) [3].
The 223Ra Mn-cartridge standard reaches the plateau under 5% of humidity, and above 50% moisture the activity seems to decrease. Considering the counting error (7%), it is hard to state that the effect of the moisture is critical. However, this decrease can be related to the shorter half-life of the 219Rn compared to the time needed to its diffusion through the water film, which could be a reason for the frequently observed lower efficiency of the 223Ra channel of the RaDeCC system [4].
[1] Henderson et al. (2013) J. Radioanal. Nucl. Chem. 296, 357–362. [2] Moore and Arnold (1996) J. Geophys. Res. 101, 321–1329. [3] Sun and Torgersen (1998) Mar. Chem. 61, 163–171. [4] Charette et al. (2012) Limnol. Oceanogr. 10, 451–463
Triplex addressability as a basis for functional DNA nanostructures
Here, we present the formation of a fully addressable DNA nanostructure that shows the potential to be exploited as, for example, an information storage device based on pH-driven triplex strand formation or nanoscale circuits based on electron transfer, The nanostructure is composed of two adjacent hexagonal unit cells (analogous to naphthalene) in which each of the eleven edges has a unique double-stranded DNA sequence, constructed using novel three-way oligonucleotides. This allows each ten base-pair side, just 3.4 nm in length, to be assigned a specific address according to its sequence. Such constructs are therefore an ideal precursor to a nonrepetitive two-dimensional grid on which the "addresses" are located at a precise and known position. Triplex recognition of these addresses could function as a simple yet efficient means of information storage and retrieval. Future applications that may be envisaged include nanoscale circuits as well as subnanometer precision in nanoparticle templating. Characterization of these precursor nanostructures and their reversible targeting by triplex strand formation is shown here using gel electrophoresis, atomic force microscopy, and fluorescence resonance energy transfer (FRET) measurements. The durability of the system to repeated cycling of pH switching is also confirmed by the FRET studies
Fredholm determinants and the statistics of charge transport
Using operator algebraic methods we show that the moment generating function
of charge transport in a system with infinitely many non-interacting Fermions
is given by a determinant of a certain operator in the one-particle Hilbert
space. The formula is equivalent to a formula of Levitov and Lesovik in the
finite dimensional case and may be viewed as its regularized form in general.
Our result embodies two tenets often realized in mesoscopic physics, namely,
that the transport properties are essentially independent of the length of the
leads and of the depth of the Fermi sea.Comment: 30 pages, 2 figures, reference added, credit amende
Quantitative Analysis of Immunoglobulin E Reactivity Profiles in Patients Allergic or Sensitized to Natural Rubber Latex (Hevea Brasiliensis)
Characterized native and recombinant Hevea brasiliensis (rHev b) natural rubber latex (NRL) allergens are available to assess patient allergen sensitization profiles.
OBJECTIVE:
Quantification of individual IgE responses to the spectrum of documented NRL allergens and evaluation of cross-reactive carbohydrate determinants (CCDs) for more definitive diagnosis.
METHODS:
Sera of 104 healthcare workers (HCW; 51 German, 21 Portuguese, 32 American), 31 spina bifida patients (SB; 11 German, 20 Portuguese) and 10 Portuguese with multiple surgeries (MS) were analysed for allergen-specific IgE antibody (sIgE) to NRL, single Hev b allergens and CCDs with ImmunoCAP technology.
RESULTS:
In all patient groups rHev b 5-sIgE concentrations were the most pronounced. Hev b 2, 5, 6.01 and 13 were identified as the major allergens in HCW and combined with Hev b 1 and Hev b 3 in SB. In MS Hev b 1 displayed an intermediate relevance. Different sIgE antibody levels to native Hevea brasiliensis (nHev b) 2 and rHev b 6.01 allowed discrimination of SB with clinical relevant latex allergy vs. those with latex sensitization. Sensitization profiles of German, Portuguese and American patients were equivalent. rHev b 5, 6.01 and nHev b 13 combined detected 100% of the latex-allergic HCW and 80.1% of the SB. Only 8.3% of the sera showed sIgE response to CCDs.
CONCLUSIONS:
Hev b 1, 2, 5, 6.01 and 13 were identified as the major Hev b allergens and they should be present in standardized latex extracts and in vitro allergosorbents. CCDs are only of minor relevance in patients with clinical relevant latex allergy. Component-resolved diagnostic analyses for latex allergy set the stage for an allergen-directed immunotherapy strateg
Hadron beam test of a scintillating fibre tracker system for elastic scattering and luminosity measurement in ATLAS
A scintillating fibre tracker is proposed to measure elastic proton
scattering at very small angles in the ATLAS experiment at CERN. The tracker
will be located in so-called Roman Pot units at a distance of 240 m on each
side of the ATLAS interaction point. An initial validation of the design
choices was achieved in a beam test at DESY in a relatively low energy electron
beam and using slow off-the-shelf electronics. Here we report on the results
from a second beam test experiment carried out at CERN, where new detector
prototypes were tested in a high energy hadron beam, using the first version of
the custom designed front-end electronics. The results show an adequate
tracking performance under conditions which are similar to the situation at the
LHC. In addition, the alignment method using so-called overlap detectors was
studied and shown to have the expected precision.Comment: 12 pages, 8 figures. Submitted to Journal of Instrumentation (JINST
BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network
Several homeodomain (HD) proteins are critical for skeletal patterning and respond directly to BMP2 as an early step in bone formation. RUNX2, the earliest transcription factor proven essential for commitment to osteoblastogenesis, is also expressed in response to BMP2. However, there is a gap in our knowledge of the regulatory cascade from BMP2 signaling to the onset of osteogenesis. Here we show that BMP2 induces DLX3, a homeodomain protein that activates Runx2 gene transcription. Small interfering RNA knockdown studies in osteoblasts validate that DLX3 is a potent regulator of Runx2. Furthermore in Runx2 null cells, DLX3 forced expression suffices to induce transcription of Runx2, osteocalcin, and alkaline phosphatase genes, thus defining DLX3 as an osteogenic regulator independent of RUNX2. Our studies further show regulation of the Runx2 gene by several homeodomain proteins: MSX2 and CDP/cut repress whereas DLX3 and DLX5 activate endogenous Runx2 expression and promoter activity in non-osseous cells and osteoblasts. These HD proteins exhibit distinct temporal expression profiles during osteoblast differentiation as well as selective association with Runx2 chromatin that is related to Runx2 transcriptional activity and recruitment of RNA polymerase II. Runx2 promoter mutagenesis shows that multiple HD elements control expression of Runx2 in relation to the stages of osteoblast maturation. Our studies establish mechanisms for commitment to the osteogenic lineage directly through BMP2 induction of HD proteins DLX3 and DLX5 that activate Runx2, thus delineating a transcriptional regulatory pathway mediating osteoblast differentiation. We propose that the three homeodomain proteins MSX2, DLX3, and DLX5 provide a key series of molecular switches that regulate expression of Runx2 throughout bone formation. <br/
Double-Stranded RNA Attenuates the Barrier Function of Human Pulmonary Artery Endothelial Cells
Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes
Asymmetries between the production of D+ and D- mesons from 500 GeV/c pi- nucleon interactions as a function of xF and pt**2
We present asymmetries between the production of D+ and D- mesons in Fermilab
experiment E791 as a function of xF and pt**2. The data used here consist of
74,000 fully-reconstructed charmed mesons produced by a 500 GeV/c pi- beam on C
and Pt foils. The measurements are compared to results of models which predict
differences between the production of heavy-quark mesons that have a light
quark in common with the beam (leading particles) and those that do not
(non-leading particles). While the default models do not agree with our data,
we can reach agreement with one of them, PYTHIA, by making a limited number of
changes to parameters used
- …
