14 research outputs found
Antioxidant and antimicrobial activities of Bauhinia racemosa L. stem bark
The present study was carried out to evaluate the antioxidant and antimicrobial activities of a methanol extract of Bauhinia racemosa (MEBR) (Caesalpiniaceae) stem bark in various systems. 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radical, superoxide anion radical, nitric oxide radical, and hydroxyl radical scavenging assays were carried out to evaluate the antioxidant potential of the extract. The antioxidant activity of the methanol extract increased in a concentration-dependent manner. About 50, 100, 250, and 500 µg MEBR inhibited the peroxidation of a linoleic acid emulsion by 62.43, 67.21, 71.04, and 76.83%, respectively. Similarly, the effect of MEBR on reducing power increased in a concentration-dependent manner. In DPPH radical scavenging assays the IC50 value of the extract was 152.29 µg/ml. MEBR inhibited the nitric oxide radicals generated from sodium nitroprusside with an IC50 of 78.34 µg/ml, as opposed to 20.4 µg/ml for curcumin. Moreover, MEBR scavenged the superoxide generated by the PMS/NADH-NBT system. MEBR also inhibited the hydroxyl radical generated by Fenton's reaction, with an IC50 value of more than 1000 µg/ml, as compared to 5 µg/ml for catechin. The amounts of total phenolic compounds were also determined and 64.7 µg pyrocatechol phenol equivalents were detected in MEBR (1 mg). The antimicrobial activities of MEBR were determined by disc diffusion with five Gram-positive, four Gram-negative and four fungal species. MEBR showed broad-spectrum antimicrobial activity against all tested microorganisms. The results obtained in the present study indicate that MEBR can be a potential source of natural antioxidant and antimicrobial agents
Scavenging effects of methanolic extracts of broad beans on free-radical species
This report describes the antioxidant characteristics of methanolic extracts from broad beans (Vicia fava). The methanolic extracts of broad beans (MEBB) exhibited a marked scavenging effect on superoxide. MEBB also exerted scavenging activities on hydrogen peroxide and 1, 1-diphenyl-2-picrylhydrazyl radical. The radical scavenging activity of MEBB was highest when the scavenging effect of MEBB on Superoxide (IC50 = 0.15 mg/ml) was examined. These results suggest that MEBB have effective activities both as a radical scavenger and as a hydrogen donor. The chelating activity of MEBB (0.70 mg/ml) on Fe2+ and Cu2+ was 31.2% and 28.5%, respectively. The antioxidant effect of MEBB on lipid peroxidation might be attributed to their properties of scavenging free-radical species and their chelating activity on metal ions. The antioxidant activity of MEBB against tert-butyl hydroperoxide (BHP)-induced oxidative stress in WI-38 cells was assessed. The activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) were measured as indices of oxidative stress. WI-38 cells incubated with 0.1 mM BHP for 2 hr exhibited the increase of SOD, catalase and GSH-Px activities over the control. When the cells incubated in MEBB (45–450 μg/ml) for 18 hr were subjected to a BHP challenge test, SOD activity returned to its control value or lower at all levels tested. When catalase activity was determined, a similar trend occurred except in the cells incubated in 112.5 μ g/ml MEBB. These results imply that MEBB inhibit oxidative stress in WI-38 cells
Antioxidant and electrochemical properties of cultivated Pleurotus spp. and their sporeless/low sporing mutants
Select Drosophila glomeruli mediate innate olfactory attraction and aversion
Fruit flies exhibit robust attraction to food odors, which usually excite multiple glomeruli. To understand how the representation of such odors leads to behavior, we used genetic tools to dissect the contribution of each activated glomerulus. Apple cider vinegar triggers robust innate attraction at a relatively low concentration, which activates six glomeruli. By silencing individual glomeruli, we found that the absence of activity in two glomeruli, DM1 and VA2, markedly reduced attraction. Conversely, when each of these two glomeruli was selectively activated, flies exhibited as robust an attraction to vinegar as wild type flies. Notably, a higher concentration of vinegar excites an additional glomerulus and is less attractive to flies. Here we show that the activation of the additional glomerulus is necessary and sufficient to mediate the behavioral switch. Together, these results indicate that individual glomeruli, rather than the entire pattern of active glomeruli, mediate innate behavioral output
