889 research outputs found

    Cirmtuzumab inhibits Wnt5a-induced Rac1 activation in chronic lymphocytic leukemia treated with ibrutinib.

    Get PDF
    Signaling via the B cell receptor (BCR) plays an important role in the pathogenesis and progression of chronic lymphocytic leukemia (CLL). This is underscored by the clinical effectiveness of ibrutinib, an inhibitor of Bruton's tyrosine kinase (BTK) that can block BCR-signaling. However, ibrutinib cannot induce complete responses (CR) or durable remissions without continued therapy, suggesting alternative pathways also contribute to CLL growth/survival that are independent of BCR-signaling. ROR1 is a receptor for Wnt5a, which can promote activation of Rac1 to enhance CLL-cell proliferation and survival. In this study, we found that CLL cells of patients treated with ibrutinib had activated Rac1. Moreover, Wnt5a could induce Rac1 activation and enhance proliferation of CLL cells treated with ibrutinib at concentrations that were effective in completely inhibiting BTK and BCR-signaling. Wnt5a-induced Rac1 activation could be blocked by cirmtuzumab (UC-961), an anti-ROR1 mAb. We found that treatment with cirmtuzumab and ibrutinib was significantly more effective than treatment with either agent alone in clearing leukemia cells in vivo. This study indicates that cirmtuzumab may enhance the activity of ibrutinib in the treatment of patients with CLL or other ROR1+ B-cell malignancies

    The economic burden of influenza-associated outpatient visits and hospitalizations in China: a retrospective survey

    Get PDF
    published_or_final_versio

    Numerical analysis of seepage–deformation in unsaturated soils

    Get PDF
    A coupled elastic–plastic finite element analysis based on simplified consolidation theory for unsaturated soils is used to investigate the coupling processes of water infiltration and deformation. By introducing a reduced suction and an elastic–plastic constitutive equation for the soil skeleton, the simplified consolidation theory for unsaturated soils is incorporated into an in-house finite element code. Using the proposed numerical method, the generation of pore water pressure and development of deformation can be simulated under evaporation or rainfall infiltration conditions. Through a parametric study and comparison with the test results, the proposed method is found to describe well the characteristics during water evaporation/infiltration into unsaturated soils. Finally, an unsaturated soil slope with water infiltration is analyzed in detail to investigate the development of the displacement and generation of pore water pressure

    Recent progress of mesoporous silica materials

    Get PDF
    Since the synthesis of novel mesoporous silica materials in 1992, the materials have become a great demand in many research fields. The authors reviewed the synthesis of mesoporous silica materials and their classification, their formation mechanism, as well as the aspects of controlling porosity and recent progresses of their applications. The mesoporous silica materials may be found great utility in catalysis and nano-technology etc

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides

    Get PDF
    Protein misfolding disorders are associated with conformational changes in specific proteins, leading to the formation of potentially neurotoxic amyloid fibrils. During pathogenesis of prion disease, the prion protein misfolds into β-sheet rich, protease-resistant isoforms. A key, hydrophobic domain within the prion protein, comprising residues 109–122, recapitulates many properties of the full protein, such as helix-to-sheet structural transition, formation of fibrils and cytotoxicity of the misfolded isoform. Using all-atom, molecular simulations, it is demonstrated that the monomeric 109–122 peptide has a preference for α-helical conformations, but that this peptide can also form β-hairpin structures resulting from turns around specific glycine residues of the peptide. Altering a single amino acid within the 109–122 peptide (A117V, associated with familial prion disease) increases the prevalence of β-hairpin formation and these observations are replicated in a longer peptide, comprising residues 106–126. Multi-molecule simulations of aggregation yield different assemblies of peptide molecules composed of conformationally-distinct monomer units. Small molecular assemblies, consistent with oligomers, comprise peptide monomers in a β-hairpin-like conformation and in many simulations appear to exist only transiently. Conversely, larger assemblies are comprised of extended peptides in predominately antiparallel β-sheets and are stable relative to the length of the simulations. These larger assemblies are consistent with amyloid fibrils, show cross-β structure and can form through elongation of monomer units within pre-existing oligomers. In some simulations, assemblies containing both β-hairpin and linear peptides are evident. Thus, in this work oligomers are on pathway to fibril formation and a preference for β-hairpin structure should enhance oligomer formation whilst inhibiting maturation into fibrils. These simulations provide an important new atomic-level model for the formation of oligomers and fibrils of the prion protein and suggest that stabilization of β-hairpin structure may enhance cellular toxicity by altering the balance between oligomeric and fibrillar protein assemblies

    Study on the synthesis and mechanism of mesoporous silica with hexastyle structure

    Get PDF
    The mesoporous silica MCM-41 materials with hexastyle structure were synthesized under strongly acidic condition. The characteristics of samples were investigated by using XRD, N-2 adsorption, HREM, and SEM techniques. The results show that MCM-41 powder with hexastyle structure, which is wormlike in micrometer-scale, consists of thousands of mesoporous channels in nano-scale. The morphogenesis of hexastyle mesoporous silica is due to the accretion of surfactant micella combined with silica oligmers in the low concentration of TEOS
    corecore