3,990 research outputs found
Physics of Proximity Josephson Sensor
We study the proximity Josephson sensor (PJS) in both bolometric and
calorimetric operation and optimize it for different temperature ranges between
25 mK and a few Kelvin. We investigate how the radiation power is absorbed in
the sensor and find that the irradiated sensor is typically in a weak
nonequilibrium state. We show in detail how the proximity of the
superconductors affects the device response: for example via changes in
electron-phonon coupling and out-of-equilibrium noise. In addition, we estimate
the applicability of graphene as the absorber material.Comment: 13 pages, 11 figures, submitted to Journal of Applied Physics, v2:
Addition of a new section discussing the radiation coupling to the device,
several minor change
Functional renormalization group study of the Anderson--Holstein model
We present a comprehensive study of the spectral and transport properties in
the Anderson--Holstein model both in and out of equilibrium using the
functional renormalization group (FRG). We show how the previously established
machinery of Matsubara and Keldysh FRG can be extended to include the local
phonon mode. Based on the analysis of spectral properties in equilibrium we
identify different regimes depending on the strength of the electron--phonon
interaction and the frequency of the phonon mode. We supplement these
considerations with analytical results from the Kondo model. We also calculate
the non-linear differential conductance through the Anderson--Holstein quantum
dot and find clear signatures of the presence of the phonon mode.Comment: 19 pages, 8 figure
Altitude dependence of plasma density in the auroral zone
International audienceWe study the altitude dependence of plasma depletions above the auroral region in the 5000?30 000 km altitude range using five years of Polar spacecraft potential data. We find that besides a general decrease of plasma density with altitude, there frequently exist additional density depletions at 2?4 RE radial distance, where RE is the Earth radius. The position of the depletions tends to move to higher altitude when the ionospheric footpoint is sunlit as compared to darkness. Apart from these cavities at 2?4 RE radial distance, separate cavities above 4 RE occur in the midnight sector for all Kp and also in the morning sector for high Kp. In the evening sector our data remain inconclusive in this respect. This holds for the ILAT range 68?74. These additional depletions may be substorm-related. Our study shows that auroral phenomena modify the plasma density in the auroral region in such a way that a nontrivial and interesting altitude variation results, which reflects the nature of the auroral acceleration processes
Theory of temperature fluctuation statistics in superconductor-normal metal tunnel structures
We describe the statistics of temperature fluctuations in a SINIS structure,
where a normal metal island (N) is coupled by tunnel junctions (I) to two
superconducting leads (S). We specify conditions under which this structure
exhibits manifestly non-Gaussian fluctuations of temperature. We consider both
the Gaussian and non-Gaussian regimes of these fluctuations, and the current
fluctuations that are caused by the fluctuating temperature. We also describe a
measurement setup that could be used to observe the temperature fluctuations.Comment: 10 pages, 9 figures, final versio
Fully Overheated Single-Electron Transistor
We consider the fully overheated single-electron transistor, where the heat
balance is determined entirely by electron transfers. We find three distinct
transport regimes corresponding to cotunneling, single-electron tunneling, and
a competition between the two. We find an anomalous sensitivity to temperature
fluctuations at the crossover between the two latter regimes that manifests in
an exceptionally large Fano factor of current noise.Comment: 6 pages, 3 figures, includes Appendi
Nonequilibrium characteristics in all-superconducting tunnel structures
We study the nonequilibrium characteristics of superconducting tunnel
structures in the case when one of the superconductors is a small island
confined between large superconductors. The state of this island can be probed
for example via the supercurrent flowing through it. We study both the
far-from-equilibrium limit when the rate of injection for the electrons into
the island exceeds the energy relaxation inside it, and the quasiequilibrium
limit when the electrons equilibrate between themselves. We also address the
crossover between these limits employing the collision integral derived for the
superconducting case. The clearest signatures of the nonequilibrium limit are
the anomalous heating effects seen as a supercurrent suppression at low
voltages, and the hysteresis at voltages close to the gap edge ,
resulting from the peculiar form of the nonequilibrium distribution function.Comment: 8 pages, 10 figure
The occurrence frequency of auroral potential structures and electric fields as a function of altitude using Polar/EFI data
The aim of the paper is to study how auroral potential structures close at high altitude. We analyse all electric field data collected by Polar on auroral field lines in 1996–2001 by integrating the electric field along the spacecraft orbit to obtain the plasma potential, from which we identify potential minima by an automatic method. From these we estimate the associated effective mapped-down electric field <i>E<sub>i</sub></i>, defined as the depth of the potential minimum divided by its half-width in the ionosphere. Notice that although we use the ionosphere as a reference altitude, the field <i>E<sub>i</sub></i> does not actually exist in the ionosphere but is just a convenient computational quantity. We obtain the statistical distribution of <i>E<sub>i</sub></i> as a function of altitude, magnetic local time (MLT), <i>K<sub>p</sub></i> index and the footpoint solar illumination condition. Surprisingly, we find two classes of electric field structures. The first class consists of the low-altitude potential structures that are presumably associated with inverted-V regions and discrete auroral arcs and their set of associated phenomena. We show that the first class exists only below ~3<i>R<sub>E</sub></i> radial distance, and it occurs in all nightside MLT sectors (<i>R<sub>E</sub></i>=Earth radius). The second class exists only above radial distance <i>R</i>=4<i>R<sub>E</sub></i> and almost only in the midnight MLT sector, with a preference for high <i>K<sub>p</sub></i> values. Interestingly, in the middle altitudes (<i>R</i>=3–4<i>R<sub>E</sub></i>) the number of potential minima is small, suggesting that the low and high altitude classes are not simple field-aligned extensions of each other. This is also underlined by the fact that statistically the high altitude structures seem to be substorm-related, while the low altitude structures seem to correspond to stable auroral arcs. The new finding of the existence of the two classes is important for theories of auroral acceleration, since it supports a closed potential structure model for stable arcs, while during substorms, different superposed processes take place that are associated with the disconnected high-altitude electric field structures.<br><br> <b>Key words.</b> Magnetospheric physics (electric fields; auroral phenomena) – Space plasma physics (electrostatic structures
Framing activities and the co-evolvement of products and operations in new ventures
New ventures need to simultaneously develop both their first offering and the operations of the venture itself. This paper extends the notion of problem-solution co-evolvement from product design to venture design, presenting results from four new Finnish ventures in the midst of creating their first offering market-ready. Based on qualitative analysis of interviews of the entrepreneur teams of these ventures, it is suggested that differences in how the venture idea is initially approached translates into different types of co-evolvement between the offering and the operations of the new ventures. In two of the companies, the product frame had been collaboratively created and remained relatively stable. Development activities within product, business model and working practices did not require large changes in the other arenas. In contrast, the product frame was shifting in the two other ventures, and the co- evolvement of the product problem and solutions had major implications for the business model and operations, and vice versa. The entrepreneurs in these companies would have seemingly benefited from having more structured systematic micro-level working practices to balance the variance in the offering and operations. By conceptually linking venture formation to co-evolvement resulting from the initial frame of development efforts, the study serves to strengthen the link between product development and entrepreneurship research.Peer reviewe
- …
