4,187 research outputs found
Recommended from our members
Patterns of Oral Microbiota Diversity in Adults and Children: A Crowdsourced Population Study.
Oral microbiome dysbiosis has been associated with various local and systemic human diseases such as dental caries, periodontal disease, obesity, and cardiovascular disease. Bacterial composition may be affected by age, oral health, diet, and geography, although information about the natural variation found in the general public is still lacking. In this study, citizen-scientists used a crowdsourcing model to obtain oral bacterial composition data from guests at the Denver Museum of Nature & Science to determine if previously suspected oral microbiome associations with an individual's demographics, lifestyle, and/or genetics are robust and generalizable enough to be detected within a general population. Consistent with past research, we found bacterial composition to be more diverse in youth microbiomes when compared to adults. Adult oral microbiomes were predominantly impacted by oral health habits, while youth microbiomes were impacted by biological sex and weight status. The oral pathogen Treponema was detected more commonly in adults without recent dentist visits and in obese youth. Additionally, oral microbiomes from participants of the same family were more similar to each other than to oral microbiomes from non-related individuals. These results suggest that previously reported oral microbiome associations are observable in a human population containing the natural variation commonly found in the general public. Furthermore, these results support the use of crowdsourced data as a valid methodology to obtain community-based microbiome data
Flux profile scanners for scattered high-energy electrons
The paper describes the design and performance of flux integrating Cherenkov
scanners with air-core reflecting light guides used in a high-energy, high-flux
electron scattering experiment at the Stanford Linear Accelerator Center. The
scanners were highly radiation resistant and provided a good signal to
background ratio leading to very good spatial resolution of the scattered
electron flux profile scans.Comment: 22 pages, 17 figure
Determination of two-photon exchange amplitudes from elastic electron-proton scattering data
Using the available cross section and polarization data for elastic
electron-proton scattering, we provide an extraction of the two-photon exchange
amplitudes at a common value of four-momentum transfer, around Q^2 = 2.5 GeV^2.
This analysis also predicts the e^+ p / e^- p elastic scattering cross section
ratio, which will be measured by forthcoming experiments.Comment: 4 pages, 5 figures, updated error analysi
A measurement of the 4He(g,n) reaction from 23 < Eg < 70 MeV
A comprehensive set of 4He(g,n) absolute cross-section measurements has been
performed at MAX-lab in Lund, Sweden. Tagged photons from 23 < Eg < 70 MeV were
directed toward a liquid 4He target, and neutrons were identified using
pulse-shape discrimination and the Time-of-flight Technique in two
liquid-scintillator detector arrays. Seven-point angular distributions have
been measured for fourteen photon energies. The results have been subjected to
complementary Transition-coefficient and Legendre-coefficient analyses. The
results are also compared to experimental data measured at comparable photon
energies as well as Recoil-Corrected Continuum Shell Model, Resonating Group
Method, and Effective Interaction Hyperspherical-Harmonic Expansion
calculations. For photon energies below 29 MeV, the angle-integrated data are
significantly larger than the values recommended by Calarco, Berman, and
Donnelly in 1983.Comment: 16 pages, 14 figures, some more revisions, submitted to Physical
Review
Urban agriculture: a global analysis of the space constraint to meet urban vegetable demand
Urban agriculture (UA) has been drawing a lot of attention recently for several reasons: the majority of the world population has shifted from living in rural to urban areas; the environmental impact of agriculture is a matter of rising concern; and food insecurity, especially the accessibility of food, remains a major challenge. UA has often been proposed as a solution to some of these issues, for example by producing food in places where population density is highest, reducing transportation costs, connecting people directly to food systems and using urban areas efficiently. However, to date no study has examined how much food could actually be produced in urban areas at the global scale. Here we use a simple approach, based on different global-scale datasets, to assess to what extent UA is constrained by the existing amount of urban space. Our results suggest that UA would require roughly one third of the total global urban area to meet the global vegetable consumption of urban dwellers. This estimate does not consider how much urban area may actually be suitable and available for UA, which likely varies substantially around the world and according to the type of UA performed. Further, this global average value masks variations of more than two orders of magnitude among individual countries. The variations in the space required across countries derive mostly from variations in urban population density, and much less from variations in yields or per capita consumption. Overall, the space required is regrettably the highest where UA is most needed, i.e., in more food insecure countries. We also show that smaller urban clusters (i.e., <100 km2 each) together represent about two thirds of the global urban extent; thus UA discourse and policies should not focus on large cities exclusively, but should also target smaller urban areas that offer the greatest potential in terms of physical space
Relativistic MHD with Adaptive Mesh Refinement
This paper presents a new computer code to solve the general relativistic
magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh
refinement (AMR). The fluid equations are solved using a finite difference
Convex ENO method (CENO) in 3+1 dimensions, and the AMR is Berger-Oliger.
Hyperbolic divergence cleaning is used to control the
constraint. We present results from three flat space tests, and examine the
accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel
solution. The AMR simulations substantially improve performance while
reproducing the resolution equivalent unigrid simulation results. Finally, we
discuss strong scaling results for parallel unigrid and AMR runs.Comment: 24 pages, 14 figures, 3 table
- …
