4,765 research outputs found

    Hydro/Battery Hybrid Systems for frequency regulation

    Get PDF
    An innovative Hydro/Battery Hybrid System (HBHS), composed of a hydropower plant (HPP) and a Battery Energy Storage System (BESS) is proposed to provide frequency regulation services in the Nordic Power System (NPS). The HBHS is envisioned to have a faster and more efficient response compared to HPPs currently providing these services, whilst retaining their high energy capacity and endurance, thus alleviating stand-alone BESS operation constraints. This Thesis aims to explore the operation and optimization of such a hybrid system in order to make it efficient and economically viable. A power plant perspective is employed, evaluating the impact different control algorithms and parameters have on the HBHS performance. Providing Frequency Containment Reserves for Normal Operation (FCR-N), to the national TSO in Sweden, is defined from technology and market analyses as the use case for the HBHS. The characteristics of HPPs suitable for HBHS implementation are found theoretically, by evaluating HPP operational constraints and regulation mechanisms. With the aim of evaluating the dynamic performance of the proposed HBHS, a frequency regulation model of the NPS is built in MATLAB and Simulink. Two different HBHS architectures are introduced, the Hydro Recharge, in which the BESS is regulating the frequency and the HPP is controlling its state of charge (SoC), and the Frequency Split, in which both elements are regulating the frequency with the HPP additionally compensating for the SoC. The dynamic performance of the units is qualitatively evaluated through existing and proposed FCR-N prequalification tests, prescribed by the TSO and ENTSO-E. Quantitative performance comparison to a benchmark HPP is performed with regards to the estimated HPP regulation wear and tear and BESS degradation during 30-day operation with historical frequency data. The two proposed HBHS architectures demonstrate significant reductions of estimated HPP wear and tear compared to the benchmark unit. Simulations consistently report a 90 % reduction in the number of movements HPP regulation mechanism performs and a more than 50 % decrease in the distance it travels. The BESS lifetime is evaluated at acceptable levels and compared for different architectures. Two different applications are identified, the first being installing the HBHS to enable the HPP to pass FCR-N prequalification tests. The second application is increasing the FCR-N capacity of the HPP by installing the HBHS. The Frequency Split HBHS shows more efficient performance when installed in the first application, as opposed to the Hydro Recharge HBHS, which shows better performance in the second application. Finally, it is concluded that a large-scale implementation of HBHSs would improve the frequency quality in the NPS, linearly decreasing the amount of time outside the normal frequency band with increasing the total installed HBHS power capacity

    Dutch Study Iraqi Asylum Seekers: Impact of a long asylum procedure on health and health related dimensions among Iraqi asylum seekers in the Netherlands; An epidemiological study

    Get PDF
    Jong, J.T.V.M. [Promotor]de Komproe, I.H. [Promotor]Gernaat, H.B.P.E. [Copromotor

    Platform for Testing and Evaluation of PUF and TRNG Implementations in FPGAs

    Get PDF
    Implementation of cryptographic primitives like Physical Unclonable Functions (PUFs) and True Random Number Generators (TRNGs) depends significantly on the underlying hardware. Common evaluation boards offered by FPGA vendors are not suitable for a fair benchmarking, since they have different vendor dependent configuration and contain noisy switching power supplies. The proposed hardware platform is primary aimed at testing and evaluation of cryptographic primitives across different FPGA and ASIC families. The modular platform consists of a motherboard and exchangeable daughter board modules. These are designed to be as simple as possible to allow cheap and independent evaluation of cryptographic blocks and namely PUFs. The motherboard is based on the Microsemi SmartFusion 2 SoC FPGA. It features a low-noise power supply, which simplifies evaluation of vulnerability to the side channel attacks. It provides also means of communication between the PC and the daughter module. Available software tools can be easily customized, for example to collect data from the random number generator located in the daughter module and to read it via USB interface. The daughter module can be plugged into the motherboard or connected using an HDMI cable to be placed inside a Faraday cage or a temperature control chamber. The whole platform was designed and optimized to fullfil the European HECTOR project (H2020) requirements

    Deception Island Volcanism (South Shetland Islands, Antarctica): Results from Thin-Section Invertigations

    Get PDF
    corecore