737 research outputs found

    IGR J11215-5952: a hard X-ray transient displaying recurrent outbursts

    Full text link
    The hard X-ray source IGRJ11215-5952 has been discovered with INTEGRAL during a short outburst in 2005 and proposed as a new member of the class of supergiant fast X-ray transients. We analysed INTEGRAL public observations of the source field in order to search for previous outbursts from this transient, not reported in literature.Our results are based on a systematic re-analysis of INTEGRAL archival observations, using the latest analysis software and instrument calibrations. We report the discovery of two previously unnoticed outbursts, spaced by intervals of ~330 days, that occurred in July 2003 and May 2004. The 5-100keV spectrum is well described by a cut-off power law, with a photon index of 0.5, and a cut-off energy ~15-20keV, typical of High Mass X-ray Binaries hosting a neutron star. A 5-100keV luminosity of 3E36 erg/s has been derived (assuming 6.2kpc, the distance of the likely optical counterpart). The 5-100keV spectral properties, the recurrent nature of the outbursts,together with the reduced error region containing the blue supergiant star HD306414,support the hypothesis that IGRJ11215-5952 is a member of the class of the Supergiant Fast X-ray Transients.Comment: 4 pages, 4 figures, accepted for publication in Astronomy and Astrophysics Letter

    Analysis of the influence of the anisotropy induced by cold rolling on duplex and super-austenitic stainless steels

    Get PDF
    This report contains the results obtained from the mechanical characterization tests carried out on two different stainless steel (duplex 6%Ni, 22%Cr and super-austenitic 31%Ni, 28%Cr) used for the manufacturing of pipes which are employed in the oil production. The activity has been performed in order to evaluate the effects of anisotropy, induced by cold rolling, on the mechanical characteristics of the investigated steels, measured in the three main directions. Considering the small size of the component, the method and the specimens used for the tests were not the standard one. The procedure carried out provided the strain measurement of the specimen during testing by means of resistive strain gages, bonded on the specimens

    IBIS/PICsIT in-flight performances

    Full text link
    PICsIT (Pixellated Imaging CaeSium Iodide Telescope) is the high energy detector of the IBIS telescope on-board the INTEGRAL satellite. PICsIT operates in the gamma-ray energy range between 175 keV and 10 MeV, with a typical energy resolution of 10% at 1 MeV, and an angular resolution of 12 arcmin within a \~100 square degree field of view, with the possibility to locate intense point sources in the MeV region at the few arcmin level. PICsIT is based upon a modular array of 4096 independent CsI(Tl) pixels, ~0.70 cm^2 in cross-section and 3 cm thick. In this work, the PICsIT on-board data handling and science operative modes are described. This work presents the in-flight performances in terms of background count spectra, sensitivity limit, and imaging capabilities.Comment: 8 pages, 4 figures. Accepted for publication on A&A, special issue on First Science with INTEGRA

    GRB030406 an extremely hard burst outside of the INTEGRAL field of view

    Get PDF
    Using the IBIS Compton mode, the INTEGRAL satellite is able to detect and localize bright and hard GRBs, which happen outside of the nominal INTEGRAL telescopes field of view. We have developed a method of analyzing such INTEGRAL data to obtain the burst location and spectra. We present the results for the case of GRB030406. The burst is localized with the Compton events, and the location is consistent with the previous Interplanetary Network position. A spectral analysis is possible with the detailed modeling of the detector response for such a far off-axis source with the offset of 36.9 ^\circ. The average spectrum of the burst is extremely hard: the photon index above 400 \kev is -1.7, with no evidence of a break up to 1.1 \mev at 90% confidence level.Comment: Astronomy and Astrophysics in pres

    Coma revealed as an extended hard X-rays source by INTEGRAL IBIS/ISGRI

    Get PDF
    Aims. We report the INTEGRAL/IBIS observations of the Coma Cluster in the hard X-ray/soft-ray domain. Methods. Since the Coma Cluster appears as an extended source, its global intensity and significance cannot be directly extracted with standard coded mask analysis. We used the method of imaging the extended sources with a coded mask telescope developed by Renaud et al. (2006). Results. The imaging capabilities and the sensitivity of the IBIS/ISGRI coded mask instrument allows us to identify for the first time the site of the emission above ~ 15 keV. We have studied the Coma Cluster morphology in the 18-30keV band and found that it follows the prediction based on X-ray observations.We also bring constraints on the non-thermal mechanism contribution at higher energies.Comment: 4 pages, 4 figures, Accepted for publication in A&A Letter

    Outburst of the X-ray transient SAX J1818.6-1703 detected by INTEGRAL in September 2003

    Full text link
    During the observation of the Galactic-center field by the INTEGRAL observatory on September 9, 2003, the IBIS/ISGRI gamma-ray telescope detected a short (several-hours-long) intense (~380 mCrab at the peak) outburst of hard radiation from the X-ray transient SAX J1818.6-1703. Previously, this source was observed only once in 1998 during a similar short outburst. We present the results of our localization, spectral and timing analyses of the object and briefly discuss the possible causes of the outburst. The release time of the bulk of the energy in such an outburst is appreciably shorter than the accretion (viscous) time that characterizes the flow of matter through a standard accretion disk.Comment: 16 pages, 7 figures, to be published in Astronomy Letters, v. 31, n. 10, p. 672 (2005

    Imaging extended sources with coded mask telescopes: Application to the INTEGRAL IBIS/ISGRI instrument

    Get PDF
    Context. In coded mask techniques, reconstructed sky images are pseudo-images: they are maps of the correlation between the image recorded on a detector and an array derived from the coded mask pattern. Aims. The INTEGRAL/IBIS telescope provides images where the flux of each detected source is given by the height of the local peak in the correlation map. As such, it cannot provide an estimate of the flux of an extended source. What is needed is intensity sky images giving the flux per solide angle as typically done at other wavelengths. Methods. In this paper, we present the response of the INTEGRAL IBIS/ISGRI coded mask instrument to extended sources. We develop a general method based on analytical calculations in order to measure the intensity and the associated error of any celestial source and validated with Monte-Carlo simulations. Results. We find that the sensitivity degrades almost linearly with the source extent. Analytical formulae are given as well as an easy-to-use recipe for the INTEGRAL user. We check this method on IBIS/ISGRI data but these results are general and applicable to any coded mask telescope.Comment: 9 pages, 6 figures, Accepted for publication in A&

    A large spin-up rate measured with INTEGRAL in the High Mass X-ray Binary Pulsar SAXJ2103.5+4545

    Full text link
    The High Mass X-ray Binary Pulsar SAXJ2103.5+4545 has been observed with INTEGRAL several times during the last outburst in 2002-2004. We report a comprehensive study of all INTEGRAL observations, allowing a study of the pulse period evolution during the recent outburst. We measured a very rapid spin-up episode, lasting 130days, which decreased the pulse period by 1.8s. The spin-up rate, pdot=-1.5e-7 s/s, is the largest ever measured for SAXJ2103.5+4545, and it is among the fastest for an accreting pulsar. The pulse profile shows evidence for temporal variability, apparently not related to the source flux or to the orbital phase. The X-ray spectrum is hard and there is significant emission up to 150keV. A new derivation of the orbital period, based on RXTE data, is also reported.Comment: 8 pages, 7 figures, accepted for publication in A&

    The Hard X-ray Emission of Cen A

    Full text link
    The radio galaxy Cen A has been detected all the way up to the TeV energy range. This raises the question about the dominant emission mechanisms in the high-energy domain. Spectral analysis allows us to put constraints on the possible emission processes. Here we study the hard X-ray emission as measured by INTEGRAL in the 3-1000 keV energy range, in order to distinguish between a thermal and non-thermal inverse Compton process. The hard X-ray spectrum of Cen A shows a significant cut-off at energies Ec = 434 (+106 -73) keV with an underlying power law of photon index 1.73 +- 0.02. A more physical model of thermal Comptonisation (compPS) gives a plasma temperature of kT = 206+-62 keV within the optically thin corona with Compton parameter y = 0.42 (+0.09 -0.06). The reflection component is significant at the 1.9 sigma level with R = 0.12 (+0.09 -0.10), and a reflection strength R>0.3 can be excluded on a 3 sigma level. Time resolved spectral studies show that the flux, absorption, and spectral slope varied in the range f(3-30 keV) = (1.2 - 9.2)e-10 erg/cm**2/s, NH = (7 - 16)e22 1/cm**2, and photon index 1.75 - 1.87. Extending the cut-off power law or the Comptonisation model to the gamma-ray range shows that they cannot account for the high-energy emission. On the other hand, also a broken or curved power law model can represent the data, therefore a non-thermal origin of the X-ray to GeV emission cannot be ruled out. The analysis of the SPI data provides no sign of significant emission from the radio lobes and gives a 3 sigma upper limit of f(40-1000 keV) < 0.0011 ph/cm**2/s. While gamma-rays, as detected by CGRO and Fermi, are caused by non-thermal (jet) processes, the main process in the hard X-ray emission of Cen A is still not unambiguously determined, being either dominated by thermal inverse Compton emission, or by non-thermal emission from the base of the jet.Comment: 8 pages, 6 figures, accepted for publication in A&
    corecore