3,204 research outputs found
The distribution of cycles in breakpoint graphs of signed permutations
Breakpoint graphs are ubiquitous structures in the field of genome
rearrangements. Their cycle decomposition has proved useful in computing and
bounding many measures of (dis)similarity between genomes, and studying the
distribution of those cycles is therefore critical to gaining insight on the
distributions of the genomic distances that rely on it. We extend here the work
initiated by Doignon and Labarre, who enumerated unsigned permutations whose
breakpoint graph contains cycles, to signed permutations, and prove
explicit formulas for computing the expected value and the variance of the
corresponding distributions, both in the unsigned case and in the signed case.
We also compare these distributions to those of several well-studied distances,
emphasising the cases where approximations obtained in this way stand out.
Finally, we show how our results can be used to derive simpler proofs of other
previously known results
Lower bounding edit distances between permutations
International audienceA number of fields, including the study of genome rearrangements and the design of interconnection networks, deal with the connected problems of sorting permutations in "as few moves as possible", using a given set of allowed operations, or computing the number of moves the sorting process requires, often referred to as the distance of the permutation. These operations often act on just one or two segments of the permutation, e.g. by reversing one segment or exchanging two segments. The cycle graph of the permutation to sort is a fundamental tool in the theory of genome rearrangements, and has proved useful in settling the complexity of many variants of the above problems. In this paper, we present an algebraic reinterpretation of the cycle graph of a permutation π as an even permutation π, and show how to reformulate our sorting problems in terms of particular factorisations of the latter permutation. Using our framework, we recover known results in a simple and unified way, and obtain a new lower bound on the prefix transposition distance (where a prefix transposition displaces the initial segment of a permutation), which is shown to outperform previous results. Moreover, we use our approach to improve the best known lower bound on the prefix transposition diameter from 2n/3 to ⌊3n/4⌋, and investigate a few relations between some statistics on π and π
Decomposing Cubic Graphs into Connected Subgraphs of Size Three
Let be the set of connected graphs of size 3. We
study the problem of partitioning the edge set of a graph into graphs taken
from any non-empty . The problem is known to be NP-complete for
any possible choice of in general graphs. In this paper, we assume that
the input graph is cubic, and study the computational complexity of the problem
of partitioning its edge set for any choice of . We identify all polynomial
and NP-complete problems in that setting, and give graph-theoretic
characterisations of -decomposable cubic graphs in some cases.Comment: to appear in the proceedings of COCOON 201
Local Moment Instability of Os in Honeycomb Li2.15Os0.85O3.
Compounds with honeycomb structures occupied by strong spin orbit coupled (SOC) moments are considered to be candidate Kitaev quantum spin liquids. Here we present the first example of Os on a honeycomb structure, Li2.15(3)Os0.85(3)O3 (C2/c, a = 5.09 Å, b = 8.81 Å, c = 9.83 Å, β = 99.3°). Neutron diffraction shows large site disorder in the honeycomb layer and X-ray absorption spectroscopy indicates a valence state of Os (4.7 ± 0.2), consistent with the nominal concentration. We observe a transport band gap of Δ = 243 ± 23 meV, a large van Vleck susceptibility, and an effective moment of 0.85 μB, much lower than expected from 70% Os(+5). No evidence of long range order is found above 0.10 K but a spin glass-like peak in ac-susceptibility is observed at 0.5 K. The specific heat displays an impurity spin contribution in addition to a power law ∝T(0.63±0.06). Applied density functional theory (DFT) leads to a reduced moment, suggesting incipient itineracy of the valence electrons, and finding evidence that Li over stoichiometry leads to Os(4+)-Os(5+) mixed valence. This local picture is discussed in light of the site disorder and a possible underlying quantum spin liquid state
- …
