386 research outputs found
Dosage des composés chlorofluorocarbonés et du tétrachlorure de carbone dans les eaux souterraines. Application à la datation des eaux.
Cahiers Techniques de Géosciences Rennes n°4Les chlorofluorocarbones (CFC) et le CCl4 sont dosés dans les eaux souterraines à laide de latechnique dite du Purge and Trap et dun chromatographe en phase gazeuse équipé dundétecteur ECD. Ils permettent destimer lâge de leau, cest à dire le temps depuis lequelleau a quitté le contact de latmosphère, ou la zone non saturée du sol. La méthode permetde dater des eaux de 1950 à nos jours. Les concentrations mesurées sont de lordre de lapicomole par litre deau et du pptv dans lair (partie par trillion de volume). Les techniques deprélèvement, déchantillonnage et de conservation ont été validées afin de ne pas contaminerles échantillons. La méthode développée permet datteindre des limites de détection de lordrede 0,01 picomole par litre deau (0,01*10-12 mole/L) pour le CFC-12. Les incertitudes sur lesâges déterminés peuvent être inférieures à quatre ans dans les cas favorables
Inter-comparison exercises on dissolved gases for groundwater dating - (1) Goals of the exercise and site choice, validation of the sampling strategy
International audienceTwo international inter-comparison exercises devoted to dissolved gases and isotope analyses in groundwater, used as tools for groundwater dating were organized in 2012 in France (IDES- Université Paris Sud - CNRS and OSUR - Université Rennes 1- CNRS). The goal was to compare sampling and analytical protocols through results obtained by the community of groundwater dating laboratories. The two exercises were: GDAT1 on three supply boreholes in a homogeneous sand-aquifer of Fontainebleau (Paris Basin, France) and GDAT2 on two supply boreholes (shallow and deep) in a fractured rock aquifer in French Brittany. This twostep exercise is the first exercise which included a large number of gases and isotopes usually used in groundwater as dating tools and also permit to discuss the uncertainties related to sampling protocols issuing from each laboratory methods. The two tests allowed 31 Laboratories from 14 countries to compare their protocols for both sampling and analyses. This paper presents the participants and parameters measured, and focuses on the validation of the sampling strategy. Two laboratories analyzed CFC and SF6 samples collected at regular intervals during the sampling operations in order to verify water homogeneity. The results obtained by the two "reference" laboratories along with monitoring of field parameters showed no clear trend of gas concentration or physic-chemical properties. It can be concluded that the pumped groundwater composition remained constant during sampling. This study also shows the potential for relatively constant pumped groundwater composition from a specific well despite the complexity and/or mixing processes that may occur at a larger scale in the aquifer
Temporal evolution of age data under transient pumping conditions
International audienceWhile most age data derived from tracers have been analyzed in steady-state flow conditions, we determine their temporal evolution when starting a pumping. Our study is based on a model made up of a shallowly dipping aquifer overlain by a less permeable aquitard characteristic of the crystalline aquifer of Plœmeur (Brittany, France). Under a pseudo transient flow assumption (instantaneous shift between two steady-state flow fields), we solve the transport equation with a backward particle-tracking method and determine the temporal evolution of the concentrations at the pumping well of CFC-11, CFC-12, CFC-113 and SF6. Apparent ages evolve because of the modifications of the flow pattern and because of the non-linear evolution of the tracer atmospheric concentrations. To identify the respective role of these two causes, we propose two successive analyses. We first convolute residence time distributions initially arising at different times at the same sampling time. We secondly convolute one residence time distribution at various sampling times. We show that flow pattern modifications control the apparent ages evolution in the first pumping year when the residence time distribution is modified from a piston-like distribution to a much broader distribution. In the first pumping year, the apparent age evolution contains transient information that can be used to better constrain hydrogeological systems and slightly compensate for the small number of tracers. Later, the residence time distribution hardly evolves and apparent ages only evolve because of the tracer atmospheric concentrations. In this phase, apparent age time-series do not reflect any evolution in the flow pattern
Intercomparison of tritium and noble gases analyses, 3H/3He ages and derived parameters excess air and recharge temperature
International audienceGroundwater age dating with the tritium-helium (3H/3He) method has become a powerful tool for hydrogeologists. The uncertainty of the apparent 3H/3He age depends on the analytical precision of the 3H measurement and the uncertainty of the tritiogenic 3He component. The goal of this study, as part of the groundwater age-dating interlaboratory comparison exercise, was to quantify the analytical uncertainty of the 3H and noble gas measurements and to assess whether they meet the requirements for 3H/3He dating and noble gas paleotemperature reconstruction. Samples for the groundwater dating intercomparison exercise were collected on 1 February, 2012, from three previously studied wells in the Paris Basin (France). Fourteen laboratories participated in the intercomparison for tritium analyses and ten laboratories participated in the noble gas intercomparison. Not all laboratories analyzed samples from every borehole. The reproducibility of the tritium measurements was 13.5%. The reproducibility of the 3He/4He ratio and 4He, Ne, Ar, Kr and Xe concentrations was 1.4%, 1.8%, 1.5%, 2.2%, 2.9%, and 2.4% respectively. The uncertainty of the tritium and noble gas measurements results in a typical 3H/3He age precision of better than 2.5 years in this case. However, the measurement uncertainties for the noble gas concentrations are insufficient to distinguish the appropriate excess air model if the measured helium concentration is not included. While the analytical uncertainty introduces an unavoidable source of uncertainty in the 3H/3He apparent age estimate, other sources of uncertainty are often much greater and less well defined than the analytical uncertainty
Coupling 3D groundwater modeling with CFC-based age dating to classify local groundwater circulation in an unconfined crystalline aquifer
International audienceNitrogen pollution of freshwater and estuarine environments is one of the most urgent environmental crises. Shallow aquifers with predominantly local flow circulation are particularly vulnerable to agricultural contaminants. Water transit time and flow path are key controls on catchment nitrogen retention and removal capacity, but the relative importance of hydrogeological and topographical factors in determining these parameters is still uncertain. We used groundwater dating and numerical modeling techniques to assess transit time and flow path in an unconfined aquifer in Brittany, France. The 35.5 km2 study catchment has a crystalline basement underneath a ∼60 m thick weathered and fractured layer, and is separated into a distinct upland and lowland area by an 80 m-high butte. We used groundwater discharge and groundwater ages derived from chlorofluorocarbon (CFC) concentration to calibrate a free-surface flow model simulating groundwater flow circulation. We found that groundwater flow was highly local (mean travel distance = 350 m), substantially smaller than the typical distance between neighboring streams (∼1 km), while CFC-based ages were quite old (mean = 40 years). Sensitivity analysis revealed that groundwater travel distances were not sensitive to geological parameters (i.e. arrangement of geological layers and permeability profile) within the constraints of the CFC age data. However, circulation was sensitive to topography in the lowland area where the water table was near the land surface, and to recharge rate in the upland area where water input modulated the free surface of the aquifer. We quantified these differences with a local groundwater ratio (rGW-LOCAL), defined as the mean groundwater travel distance divided by the mean of the reference surface distances (the distance water would have to travel across the surface of the digital elevation model). Lowland, rGW-LOCAL was near 1, indicating primarily topographical controls. Upland, rGW-LOCAL was 1.6, meaning the groundwater recharge area is almost twice as large as the topographically-defined catchment for any given point. The ratio rGW-LOCAL is sensitive to recharge conditions as well as topography and it could be used to compare controls on groundwater circulation within or between catchments
High CO2 decreases the long-term resilience of the free-living coralline algae Phymatolithon lusitanicum
Maerl/rhodolith beds are protected habitats that may be affected by ocean acidification (OA), but it is still unclear how the availability of CO2 will affect the metabolism of these organisms. Some of the inconsistencies found among OA experimental studies may be related to experimental exposure time and synergetic effects with other stressors. Here, we investigated the long-term (up to 20months) effects of OA on the production and calcification of the most common maerl species of southern Portugal, Phymatolithon lusitanicum. Both the photosynthetic and calcification rates increased with CO2 after the first 11months of the experiment, whereas respiration slightly decreased with CO2. After 20months, the pattern was reversed. Acidified algae showed lower photosynthetic and calcification rates, as well as lower accumulated growth than control algae, suggesting that a metabolic threshold was exceeded. Our results indicate that long-term exposure to high CO2 will decrease the resilience of Phymatolithon lusitanicum. Our results also show that shallow communities of these rhodoliths may be particularly at risk, while deeper rhodolith beds may become ocean acidification refuges for this biological community.Fundacao para a Ciencia e a Tecnologia [PTDC/MAR/115789/2009, SFRH/BD/76762/2011
Residence time, mineralization processes and groundwater origin within a carbonate coastal aquifer with a thick unsaturated zone
International audienceThis study aims at establishing groundwater residence times, identifying mineralization processes and determining groundwater origins within a carbonate coastal aquifer with thick unsaturated zone and lying on a granitic depression. A multi-tracer approach (major ions, SiO2, Br-, Ba+, Sr2+, 18O, 2H, 13C, 3H, Ne, Ar) combined with a groundwater residence time determination using CFCs and SF6 allows defining the global setting of the study site. A typical mineralization conditioned by the sea sprays and the carbonate matrix helped to validate the groundwater weighted residence times from using a binary mixing model. Terrigenic SF6 excesses have been detected and quantified, which permits to identify a groundwater flow from the surrounding fractured granites towards the lower aquifer principally. The use of CFCs and SF6 as a first hydrogeological investigation tool is possible and very relevant despite the thick unsaturated zone and the hydraulic connexion with a granitic environment
Selective and quantitative nitrate electroreduction to ammonium using a porous copper electrode in an electrochemical flow cell
International audienceThe aim of this work was to set up a novel electrochemical system allowing an efficient transformation of concentrated nitrate solutions to ammonium and which can be subsequently implemented on a large scale application. First, this paper describes the preparation of a porous copper modified electrode by successive electrodeposition of nickel then copper on a graphite felt of large specific surface area. Homogeneous Cu coating of all fibers in the 3D porous structure was successfully obtained using low concentrations of copper salts and high applied current intensities. The porous copper electrode was then used in a flow electrochemical process to achieve a selective and quantitative transformation of concentrated nitrate into ammonium. Different electrolytic solutions, slightly acid (acetate buffer) or neutral (phosphate buffer), and flow rates were investigated. The nitrate solution was quantitatively reduced into NH4+ with high selectivity in only one pass through the electrode. When the applied current was similar to the theoretical one, the maximum selectivity (96%) and the best current efficiency (72%) for NH4+ formation were reached at pH 7.2 with a flow rate of 2 mL min−1. The obtained ammonium solution can be subsequently used either as a potential nitrogen source during microbial culture or simply as a fertilizer
Compartmentalization of physical and chemical properties in hard-rock aquifers deduced from chemical and groundwater age analyses
International audienceUsing groundwater age determination done through CFC analysis and geochemical data obtained from seven sites in Brittany (France), a hydrogeochemical model for hard-rock aquifers is presented. According to the geological structure, three zones can be defined: the weathered layer, about 30 m thick; the weathered-fissured layer (fractured rock with a high density of fissures induced by weathering), which represents a transition zone between the weathered zone and the lower fractured zone; and the unweathered part of the aquifer. (1) The weathered layer (alterites) is often considered as a porous medium and is the only part frequently used in hard-rock aquifers. Recent apparent ages (010 a) are observed in the groundwater fluctuation zone in a thin layer, which is from 12 m-thick in the lower parts and 1015 m-thick in the upper parts of the catchments. Below this thin layer, the groundwater apparent age is high (between 10 and 25 a) and is unexpectedly homogeneous at the regional scale. This groundwater apparent age contrast, which also corresponds to a Cl- concentration contrast, is attributed to rapid lateral transfers in the fluctuation zone which limit water transfer to the underlying weathered zone. Groundwater chemistry is characterized by and Cl- concentrations related to land uses (high in agricultural areas, low in preserved ones). (2) At the interface between the weathered and the weathered-fissured layers a strong biogeochemical reactivity is observed. Autotrophic denitrification is enhanced by a higher availability of sulfides. (3) Under this interface, in the weathered-fissured layer and the underlying fractured deep part of the aquifer, groundwater apparent age is clearly correlated to depth. The vertical groundwater velocity is estimated to be 3 m/a, whatever be the site, which seems to indicate a regional topographic control on groundwater circulation in the deep part of the aquifer. In this deep part, groundwater chemistry is modified by waterrock interaction processes as indicated by Ca and Na concentrations, and a slight sea-water contribution (from 0.1% to 0.65%) in the sites close to the seacoast. One site inland shows a saline and old end-member. The global hydrogeochemical scheme is modified when the aquifer is pumped at a high rate in the fissured-weathered layer and/or the fractured layer. The increase in water velocity leads to a homogeneous groundwater apparent age, whatever be the depth in the weathered-fissured and fractured layers
Seagrass can mitigate negative ocean acidification effects on calcifying algae
The ultimate effect that ocean acidification (OA) and warming will have on the physiology of calcifying algae is still largely uncertain. Responses depend on the complex interactions between seawater chemistry, global/local stressors and species-specific physiologies. There is a significant gap regarding the effect that metabolic interactions between coexisting species may have on local seawater chemistry and the concurrent effect of OA. Here, we manipulated CO2 and temperature to evaluate the physiological responses of two common photoautotrophs from shallow tropical marine coastal ecosystems in Brazil: the calcifying alga Halimeda cuneata, and the seagrass Halodule wrightii. We tested whether or not seagrass presence can influence the calcification rate of a widespread and abundant species of Halimeda under OA and warming. Our results demonstrate that under elevated CO2, the high photosynthetic rates of H. wrightii contribute to raise H. cuneata calcification more than two-fold and thus we suggest that H. cuneata populations coexisting with H. wrightii may have a higher resilience to OA conditions. This conclusion supports the more general hypothesis that, in coastal and shallow reef environments, the metabolic interactions between calcifying and non-calcifying organisms are instrumental in providing refuge against OA effects and increasing the resilience of the more OA-susceptible species.E.B. would like to thank the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES) for Masters
funding. Funding for this project came from the Synergism grant (CNPq 407365/2013-3). We extend our thanks
to the Brazil-based Projeto Coral Vivo and its sponsor PetroBras Ambiental for providing the Marine Mesocosm
structure and experimental assistance.info:eu-repo/semantics/publishedVersio
- …
