524 research outputs found
Genetic structure of First Nation communities in the Pacific Northwest
This study presents genetic data for nine Native American populations from northern North America. Analyses of genetic variation focus on the Pacific Northwest (PNW). Using mitochondrial, Y chromosomal and autosomal DNA variants, we aim to more closely address the relationships of geography and language with present genetic diversity among the regional PNW Native American populations. Patterns of genetic diversity exhibited by the three genetic systems were consistent with our hypotheses, in that we expected genetic variation to be more strongly explained by geographic proximity than linguistic structure. Our findings were corroborated through a variety on analytic approaches, with the unrooted trees for the three genetic systems consistently separating inland from coastal PNW populations. Furthermore, the AMOVA tests support the trends exhibited by the unrooted trees, with geographic partitioning of PNW populations (FCT = 19.43%, p = 0.010 ± 0.009) accounting for over twice as much of the observed genetic variation compared with linguistic partitioning of the same populations (FCT = 9.15%, p = 0.193 ± 0.013). These findings demonstrate a consensus with previous PNW population studies examining the relationships of genome-wide variation, mitochondrial haplogroup frequencies, and skeletal morphology with geography and language
Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission
BACKGROUND: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model.
METHODS: Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model.
RESULTS: To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva.
CONCLUSION: The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination
Characteristics of transposable element exonization within human and mouse
Insertion of transposed elements within mammalian genes is thought to be an
important contributor to mammalian evolution and speciation. Insertion of
transposed elements into introns can lead to their activation as alternatively
spliced cassette exons, an event called exonization. Elucidation of the
evolutionary constraints that have shaped fixation of transposed elements
within human and mouse protein coding genes and subsequent exonization is
important for understanding of how the exonization process has affected
transcriptome and proteome complexities. Here we show that exonization of
transposed elements is biased towards the beginning of the coding sequence in
both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs)
revealed that exonization of transposed elements can be population-specific,
implying that exonizations may enhance divergence and lead to speciation. SNP
density analysis revealed differences between Alu and other transposed
elements. Finally, we identified cases of primate-specific Alu elements that
depend on RNA editing for their exonization. These results shed light on TE
fixation and the exonization process within human and mouse genes.Comment: 11 pages, 4 figure
Developmental expression of SNAP-25 protein in the rat striatum and cerebral cortex
The developmental changes of 25-kDa synaptosomal-associated protein (SNAP-25)
expression in the rat striatum and cerebral cortex were examined using Western-
blotting and densitometric scanning of immunoblots. Analysis of the striatum
extracts from postnatal day 0 (P0) to postnatal day 120 (P120) demonstrated
that SNAP-25 is poorly expressed until P14. From this point the expression
level gradually increases to reach a maximum on P60 and then decreases. The
pattern of SNAP-25 expression in the rat cerebral cortex is different. Two peaks
are observed, the first on P10 and the second on P60, after which the expression
level decreases. These results appear to confirm the role of SNAP-25 protein
in axon outgrowth and synaptogenesis in the nervous system
Recommended from our members
Unexpected Role of CD8 T Cells in Accelerated Clearance of Salmonella enterica Serovar Typhimurium from H-2 Congenic mice
Salmonella infection can cause gastroenteritis in healthy individuals or a serious, systemic infection in immunocompromised patients and has a global impact. CD4 Th1 cells represent the main lymphocyte population that participates in bacterial clearance during both primary and secondary infections in mice of the H-2b haplotype. Previous studies have used congenic mice to examine the function of major histocompatibility complex (MHC) molecules in elimination of this pathogen from the host. In this study, we further characterized the ability of H-2b, H-2k, and H-2u molecules to influence adaptive immunity to Salmonella in MHC congenic mice. By depleting different cell populations during infection, we unexpectedly found that CD8 T cells, in addition to CD4 T cells, play a major role in accelerated clearance of bacteria from H-2k congenic hosts. Our data suggest that CD8 T cells accelerate clearance in some MHC congenic mouse strains and could therefore represent an unexpected contributor to the protective efficacy of Salmonella vaccines outside the typical studies in C57BL/6 mice
Reconstructing Native American Population History
The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved1–5. One contentious issue is whether the settlement occurred via a single6–8 or multiple streams of migration from Siberia9–15. The pattern of dispersals within the Americas is also poorly understood. To address these questions at higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. We show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call “First American”. However, speakers of Eskimo-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan-speakers on both sides of the Panama Isthmus, who have ancestry from both North and South America
Serological evidence of tick-borne encephalitis virus infection in moose and deer in Finland: sentinels for virus circulation
- …
