757 research outputs found

    Intercalation of Hydrotalcites with Hexacyanoferrate(II) and (III)-a ThermoRaman Spectroscopic Study

    Get PDF
    Raman spectroscopy using a hot stage indicates that the intercalation of hexacyanoferrate(II) and (III) in the interlayer space of a Mg,Al hydrotalcites leads to layered solids where the intercalated species is both hexacyanoferrate(II) and (III). Raman spectroscopy shows that depending on the oxidation state of the initial hexacyanoferrate partial oxidation and reduction takes place upon intercalation. For the hexacyanoferrate(III) some partial reduction occurs during synthesis. The symmetry of the hexacyanoferrate decreases from Oh existing for the free anions to D3d in the hexacyanoferrate interlayered hydrotalcite complexes. Hot stage Raman spectroscopy reveals the oxidation of the hexacyanoferrate(II) to hexacyanoferrate(III) in the hydrotalcite interlayer with the removal of the cyanide anions above 250 °C. Thermal treatment causes the loss of CN ions through the observation of a band at 2080 cm-1. The hexacyanoferrate (III) interlayered Mg,Al hydrotalcites decomposes above 150 °C

    Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission

    Get PDF
    BACKGROUND: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. METHODS: Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. RESULTS: To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. CONCLUSION: The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination

    Characteristics of transposable element exonization within human and mouse

    Get PDF
    Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of transposed elements within human and mouse protein coding genes and subsequent exonization is important for understanding of how the exonization process has affected transcriptome and proteome complexities. Here we show that exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs) revealed that exonization of transposed elements can be population-specific, implying that exonizations may enhance divergence and lead to speciation. SNP density analysis revealed differences between Alu and other transposed elements. Finally, we identified cases of primate-specific Alu elements that depend on RNA editing for their exonization. These results shed light on TE fixation and the exonization process within human and mouse genes.Comment: 11 pages, 4 figure

    The effect of annealing on the properties of optical waveguides

    Get PDF
    Thesis (B.S.) in Chemistry--University of Illinois at Urbana-Champaign, 1990.Includes bibliographical references (leaves 11-12)Microfiche of typescript. [Urbana, Ill.]: Photographic Services, University of Illinois, U of I Library, [1990]. 1 microfiche (20 frames): negative.s 1990 ilu n

    You Know What I Mean: An Exploration of the Second-Person Narrative

    Get PDF
    The author defines the second-person narrative mode, and then uses the second person to write a collection of short stories. The definition of the second person breaks the form into the standard, hypothetical, and autotelic subcategories. This thesis explains the rhetorical effects of each subcategory as it applies to literary fiction, in contrast to nonfiction forums such as self-help books and guidebooks. The different forms of the second person are then demonstrated in a series of short, creative works written by the author. Preceding each creative piece is an explanation of how the second-person narrative mode functions within the short work of fiction

    Vaccination against Bm86 Homologues in Rabbits Does Not Impair Ixodes ricinus Feeding or Oviposition

    Get PDF
    Human tick-borne diseases that are transmitted by Ixodes ricinus, such as Lyme borreliosis and tick borne encephalitis, are on the rise in Europe. Diminishing I. ricinus populations in nature can reduce tick exposure to humans, and one way to do so is by developing an anti-vector vaccine against tick antigens. Currently, there is only one anti-vector vaccine available against ticks, which is a veterinary vaccine based on the tick antigen Bm86 in the gut of Rhipicephalus microplus. Bm86 vaccine formulations cause a reduction in the number of Rhipicephalus microplus ticks that successfully feed, i.e. lower engorgement weights and a decrease in the number of oviposited eggs. Furthermore, Bm86 vaccines reduce transmission of bovine Babesia spp. Previously two conserved Bm86 homologues in I. ricinus ticks, designated as Ir86-1 and Ir86-2, were described. Here we investigated the effect of a vaccine against recombinant Ir86-1, Ir86-2 or a combination of both on Ixodes ricinus feeding. Recombinant Ixodes ricinus Bm86 homologues were expressed in a Drosophila expression system and rabbits were immunized with rIr86-1, rIr86-2, a combination of both or ovalbumin as a control. Each animal was infested with 50 female adults and 50 male adults Ixodes ricinus and tick mortality, engorgement weights and egg mass were analyzed. Although serum IgG titers against rIr86 proteins were elicited, no effect was found on tick feeding between the rIr86 vaccinated animals and ovalbumin vaccinated animals. We conclude that vaccination against Bm86 homologues in Ixodes ricinus is not an effective approach to control Ixodes ricinus populations, despite the clear effects of Bm86 vaccination against Rhipicephalus microplus

    Chemically modified electrodes as amperometric sensors in electroanalysis

    Get PDF
    The state and prospects in the development of new fields of electroanalytical chemistry, namely amperometric sensors based on chemically modified electrodes, are examined. The methods for the construction of these electrodes, the types of modifying agents, and the mechanisms of their response to substrates are discussed. The analytical possibilities of chemically modified electrodes, including amperometric biosensors based on them, in the solution of problems associated with ecology, medicine, and pharmacology are demonstrated. © 1992 IOP Publishing Ltd

    Complex electrochemical and impedimetric evaluation of DNA damage by using DNA biosensor based on a carbon screen-printed electrode

    Get PDF
    DNA biosensor (DNA/SWCNT-COOH-CHIT/SPCE) composed of dsDNA adsorptive layer on a carboxylated single-walled carbon nanotubes-chitosan composite deposited at a commercial carbon based screen-printed electrode has been prepared and applied to a complex investigation of damage to DNA by the Fenton type cleavage agent (hydroxyl radicals formed in the mixture of Cu2+, H 2O2 and ascorbic acid) and copper(ii)-quercetin system in 0.1 M PBS pH 7.0 under aerobic conditions. The dsDNA damage detection is performed by using square-wave voltammetry (SWV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in 1 × 10-7 M thioridazine and 1 × 10-3 M K4[Fe(CN) 6]/K3Fe(CN)6 in the 0.1 M phosphate buffer solution, pH 7.0. Initial enhancement of the intrinsic guanine and adenine moieties SWV response over that of original dsDNA one indicates opening of the helix structure in the first stage of damage. At the same time, decrease in the intercalated thioridazine response confirms damage of the helix structure in parallel to deep degradation of the DNA chain and its removal from the electrode surface as indicated by the CV and EIS measurements in the presence of the [Fe(CN)6]3-/4- redox indicator in solution. © 2011 The Royal Society of Chemistry

    Biosensor with Protective Membrane for the Detection of DNA Damage and Antioxidant Properties of Fruit Juices

    Get PDF
    With the purpose to prepare a DNA biosensor protected with an outer-sphere membrane against high molecular weight interferences, a carbon film electrode was layer-by-layer modified with dsDNA and chitosan. Using cyclic and square-wave voltammetry and impedance spectroscopy, the oxidative damage of DNA by the hydroxyl and superoxide anion radicals was detected which consists of opening of the helix structure followed by deep DNA chain degradation. The biosensor has been applied to the detection of the antioxidant effect of apple and orange juices. The investigation of the novel biosensor with a protective membrane represents a significant contribution to the field of DNA biosensors utilization. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Developmental expression of SNAP-25 protein in the rat striatum and cerebral cortex

    Get PDF
    The developmental changes of 25-kDa synaptosomal-associated protein (SNAP-25) expression in the rat striatum and cerebral cortex were examined using Western- blotting and densitometric scanning of immunoblots. Analysis of the striatum extracts from postnatal day 0 (P0) to postnatal day 120 (P120) demonstrated that SNAP-25 is poorly expressed until P14. From this point the expression level gradually increases to reach a maximum on P60 and then decreases. The pattern of SNAP-25 expression in the rat cerebral cortex is different. Two peaks are observed, the first on P10 and the second on P60, after which the expression level decreases. These results appear to confirm the role of SNAP-25 protein in axon outgrowth and synaptogenesis in the nervous system
    corecore