4,398 research outputs found
Investigation of nickel hydrogen battery technology for the RADARSAT spacecraft
The low Earth orbit (LEO) operations of the RADARSAT spacecraft require high performance batteries to provide energy to the payload and platform during eclipse period. Nickel Hydrogen cells are currently competing with the more traditional Nickel Cadmium cells for high performance spacecraft applications at geostationary Earth orbit (GEO) and Leo. Nickel Hydrogen cells appear better suited for high power applications where high currents and high Depths of Discharge are required. Although a number of GEO missions have flown with Nickel Hydrogen batteries, it is not readily apparent that the LEO version of the Nickel Hydrogen cell is able to withstand the extended cycle lifetime (5 years) of the RADARSAT mission. The problems associated with Nickel Hydrogen cells are discussed in the contex of RADARSAT mission and a test program designed to characterize cell performance is presented
Nuclear Effects in Neutrino Induced Coherent Pion Production at K2K and MiniBooNE Neutrino Energies
The coherent pion production induced by neutrinos in nuclei is studied using
a delta hole model in local density approximation taking into account the
renormalization of properties in a nuclear medium. The pion absorption
effects have been included in an eikonal approximation. These effects give a
large reduction in the total cross section. The numerical results for the total
cross section are found to be consistent with recent experimental results from
K2K and MiniBooNE collaborations and other older experiments in the
intermediate energy region.Comment: 4pages, 5figure
Theoretical study of neutrino-induced coherent pion production off nuclei at T2K and MiniBooNE energies
We have developed a model for neutrino-induced coherent pion production off
nuclei in the energy regime of interest for present and forthcoming neutrino
oscillation experiments. It is based on a microscopic model for pion production
off the nucleon that, besides the dominant Delta pole contribution, takes into
account the effect of background terms required by chiral symmetry. Moreover,
the model uses a reduced nucleon-to-Delta resonance axial coupling, which leads
to coherent pion production cross sections around a factor two smaller than
most of the previous theoretical estimates. In the coherent production, the
main nuclear effects, namely medium corrections on the Delta propagator and the
final pion distortion, are included. We have improved on previous similar
models by taking into account the nucleon motion and employing a more
sophisticated optical potential. As found in previous calculations the
modification of the Delta self-energy inside the nuclear medium strongly
reduces the cross section, while the final pion distortion mainly shifts the
peak position to lower pion energies. The angular distribution profiles are not
much affected by nuclear effects. Nucleon motion increases the cross section by
15% at neutrino energies of 650 MeV, while Coulomb effects on charged pions are
estimated to be small. Finally, we discuss at length the deficiencies of the
Rein-Sehgal pion coherent production model for neutrino energies below 2 GeV,
and in particular for the MiniBooNE and T2K experiments. We also predict flux
averaged cross sections for these two latter experiments and K2K.Comment: 19 latex pages, 10 figures, 2 tables. Minor changes. Version accepted
for publication in Physical Review
Functional Characterisation of Alpha-Galactosidase A Mutations as a Basis for a New Classification System in Fabry Disease
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The study has been supported partially by an unrestricted scientific grant from Shire Human Genetic Therapies (Germany
Detection of Damage in Operating Wind Turbines by Signature Distances
Wind turbines operate in the atmospheric boundary layer and are subject to complex random loading. This precludes using a deterministic response of healthy turbines as the baseline for identifying the effect of damage on the measured response of operating turbines. In the absence of such a deterministic response, the stochastic dynamic response of the tower to a shutdown maneuver is found to be affected distinctively by damage in contrast to wind. Such a dynamic response, however, cannot be established for the blades. As an alternative, the estimate of blade damage is sought through its effect on the third or fourth modal frequency, each found to be mostly unaffected by wind. To discern the effect of damage from the wind effect on these responses, a unified method of damage detection is introduced that accommodates different responses. In this method, the dynamic responses are transformed to surfaces via continuous wavelet transforms to accentuate the effect of wind or damage on the dynamic response. Regions of significant deviations between these surfaces are then isolated in their corresponding planes to capture the change signatures. The image distances between these change signatures are shown to produce consistent estimates of damage for both the tower and the blades in presence of varying wind field profiles
The Search for Stable, Massive, Elementary Particles
In this paper we review the experimental and observational searches for
stable, massive, elementary particles other than the electron and proton. The
particles may be neutral, may have unit charge or may have fractional charge.
They may interact through the strong, electromagnetic, weak or gravitational
forces or through some unknown force. The purpose of this review is to provide
a guide for future searches - what is known, what is not known, and what appear
to be the most fruitful areas for new searches. A variety of experimental and
observational methods such as accelerator experiments, cosmic ray studies,
searches for exotic particles in bulk matter and searches using astrophysical
observations is included in this review.Comment: 34 pages, 8 eps figure
Gold-Catalyzed Intramolecular Aminoarylation of Alkenes: C-C Bond Formation through Bimolecular Reductive Elimination
Gold-ilocks and the 3 mol % catalyst: Bimetallic gold bromides allow the room temperature aminoarylation of unactivated terminal olefins with aryl boronic acids using Selectfluor as an oxidant. A catalytic cycle involving gold(I)/gold(III) and a bimolecular reductive elimination for the key CC bond-forming step is proposed. dppm= bis(diphenylphosphanyl)methane
The relationship of female physical attractiveness to body fatness
Funding This work was supported by NSFC grant 91431102 from the National Science Foundation of China. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgements We are grateful to all the participants from all the countries and all the members of Molecular Energetics Group for their help on the investigation and discussion of the results.Peer reviewedPublisher PD
Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents
The dynamics of large scale plasma instabilities can strongly be influenced
by the mutual interaction with currents flowing in conducting vessel
structures. Especially eddy currents caused by time-varying magnetic
perturbations and halo currents flowing directly from the plasma into the walls
are important. The relevance of a resistive wall model is directly evident for
Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However,
also the linear and non-linear properties of most other large-scale
instabilities may be influenced significantly by the interaction with currents
in conducting structures near the plasma. The understanding of halo currents
arising during disruptions and VDEs, which are a serious concern for ITER as
they may lead to strong asymmetric forces on vessel structures, could also
benefit strongly from these non-linear modeling capabilities. Modeling the
plasma dynamics and its interaction with wall currents requires solving the
magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry
consistently coupled with a model for the vacuum region and the resistive
conducting structures. With this in mind, the non-linear finite element MHD
code JOREK has been coupled with the resistive wall code STARWALL, which allows
to include the effects of eddy currents in 3D conducting structures in
non-linear MHD simulations. This article summarizes the capabilities of the
coupled JOREK-STARWALL system and presents benchmark results as well as first
applications to non-linear simulations of RWMs, VDEs, disruptions triggered by
massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives
for extending the model to halo currents are described.Comment: Proceeding paper for Theory of Fusion Plasmas (Joint Varenna-Lausanne
International Workshop), Varenna, Italy (September 1-5, 2014); accepted for
publication in: to Journal of Physics: Conference Serie
Numerical study of tearing mode seeding in tokamak X-point plasma
A detailed understanding of island seeding is crucial to avoid (N)TMs and
their negative consequences like confinement degradation and disruptions. In
the present work, we investigate the growth of 2/1 islands in response to
magnetic perturbations. Although we use externally applied perturbations
produced by resonant magnetic perturbation (RMP) coils for this study, results
are directly transferable to island seeding by other MHD instabilities creating
a resonant magnetic field component at the rational surface. Experimental
results for 2/1 island penetration from ASDEX Upgrade are presented extending
previous studies. Simulations are based on an ASDEX Upgrade L-mode discharge
with low collisionality and active RMP coils. Our numerical studies are
performed with the 3D, two fluid, non-linear MHD code JOREK. All three phases
of mode seeding observed in the experiment are also seen in the simulations:
first a weak response phase characterized by large perpendicular electron flow
velocities followed by a fast growth of the magnetic island size accompanied by
a reduction of the perpendicular electron velocity, and finally the saturation
to a fully formed island state with perpendicular electron velocity close to
zero. Thresholds for mode penetration are observed in the plasma rotation as
well as in the RMP coil current. A hysteresis of the island size and electron
perpendicular velocity is observed between the ramping up and down of the RMP
amplitude consistent with an analytically predicted bifurcation. The transition
from dominant kink/bending to tearing parity during the penetration is
investigated
- …
