6,592 research outputs found

    Search for Extra Space-Dimensions at the LHC

    Get PDF
    The introduction of extra space dimensions in the theory could be an elegant way tovsolve the hierarchy problem. There could even be one energy scale at which all interactions could unify. The limits coming from our knowledge of the gravitation at low distance allow this energy scale to be as low as few TeV. This situation is extremely interesting experimentally in the context of the LHC which will cover the range from 100 GeV to few TeV. This article describes the different analyses developed by the LHC experiments to study this new phenomenology.Comment: 7 pages, 6 figure

    Magnetic exchange interaction between rare-earth and Mn ions in multiferroic hexagonal manganites

    Full text link
    We report a study of magnetic dynamics in multiferroic hexagonal manganite HoMnO3 by far-infrared spectroscopy. Low-temperature magnetic excitation spectrum of HoMnO3 consists of magnetic-dipole transitions of Ho ions within the crystal-field split J=8 manifold and of the triangular antiferromagnetic resonance of Mn ions. We determine the effective spin Hamiltonian for the Ho ion ground state. The magnetic-field splitting of the Mn antiferromagnetic resonance allows us to measure the magnetic exchange coupling between the rare-earth and Mn ions.Comment: accepted for publication in Physical Review Letter

    Scale-dependent effects of density and habitat on foal survival

    Get PDF
    Identifying the most appropriate scale to study factors influencing life history is important to evolutionary ecology and wildlife management. For example, the scale at which density is assessed and explains variation in survival can affect how biologists observe and interpret population dynamics, which can influence plans for managing populations. Feral horses (Equus ferus caballus) contrast with most ungulates by exhibiting a mating system characterized by female-defense polygyny with persistent, non-territorial breeding groups (bands) and female-biased initial (natal) and subsequent (breeding) dispersal. We predicted that for horses, offspring movements coupled with female-biased breeding dispersal would increase the scale at which density best related to juvenile survival compared to species with greater female philopatry. From 2008 to 2013, we censused the population of feral horses on Sable Island, Canada. We annually computed individual-specific local densities for 442 foals (horses/km2 in radii of 2,000 m, 4,000 m, and 8,000 m fixed to a band’s centroid of movements) and whole-island (total) population density, group (band) size, and local access to surface freshwater, which affected movement patterns and selection of vegetation by females. The population of feral horses increased from 380 in 2008 to 559 in 2013. Overwinter survival of foals averaged 82.8%. Island-wide density was the most important predictor of foal mortality and was negatively associated with survival, with a lesser negative effect from local density. Increased access to surface freshwater (ponds) was an important predictor of foal survival but only at certain scales. Our study emphasizes the relevance of a multi-scale approach when analyzing the response of fitness components to changes in habitat and population processes, which may be influenced by the particular social organization of the species

    Fabrication and Characterization of Topological Insulator Bi2_2Se3_3 Nanocrystals

    Full text link
    In the recently discovered class of materials known as topological insulators, the presence of strong spin-orbit coupling causes certain topological invariants in the bulk to differ from their values in vacuum. The sudden change of invariants at the interface results in metallic, time reversal invariant surface states whose properties are useful for applications in spintronics and quantum computation. However, a key challenge is to fabricate these materials on the nanoscale appropriate for devices and probing the surface. To this end we have produced 2 nm thick nanocrystals of the topological insulator Bi2_2Se3_3 via mechanical exfoliation. For crystals thinner than 10 nm we observe the emergence of an additional mode in the Raman spectrum. The emergent mode intensity together with the other results presented here provide a recipe for production and thickness characterization of Bi2_2Se3_3 nanocrystals.Comment: 4 pages, 3 figures (accepted for publication in Applied Physics Letters

    Probing TeV-scale gauge unification by hadronic collisions

    Full text link
    Grand unified theories (GUTs) and extra dimensions are potential ingredients of the new physics that may resolve various outstanding problems of the Standard Model. If the inverse size of (one of) the extra dimension(s) is smaller than the GUT scale and standard gauge bosons are allowed to propagate in the bulk then, among other consequences, the evolution of the gauge couplings deviates from the usual logarithmic running somewhat below and between these two scales. In this work, we show that if the compactification scale is the order of 10 TeV, then this modified running may be observable at the CERN Large Hadron Collider in the dijet invariant mass distribution. We also demonstrate that dijets are highly sensitive to the renormalization effects of the extra dimensions, and are potential tools for determining the number of dimensions and the value of the compactification scale.Comment: 10 pages, 2 figures, using JHEP styl

    Optical characterization of Bi2_2Se3_3 in a magnetic field: infrared evidence for magnetoelectric coupling in a topological insulator material

    Full text link
    We present an infrared magneto-optical study of the highly thermoelectric narrow-gap semiconductor Bi2_2Se3_3. Far-infrared and mid-infrared (IR) reflectance and transmission measurements have been performed in magnetic fields oriented both parallel and perpendicular to the trigonal cc axis of this layered material, and supplemented with UV-visible ellipsometry to obtain the optical conductivity σ1(ω)\sigma_1(\omega). With lowering of temperature we observe narrowing of the Drude conductivity due to reduced quasiparticle scattering, as well as the increase in the absorption edge due to direct electronic transitions. Magnetic fields HcH \parallel c dramatically renormalize and asymmetrically broaden the strongest far-IR optical phonon, indicating interaction of the phonon with the continuum free-carrier spectrum and significant magnetoelectric coupling. For the perpendicular field orientation, electronic absorption is enhanced, and the plasma edge is slightly shifted to higher energies. In both cases the direct transition energy is softened in magnetic field.Comment: Final versio
    corecore