38 research outputs found
Diversity of mammalian species at natural licks in rain forest of Deramakot and their conservation
Natural licks are an important place for mammals to obtain mineral elements that are deficient in their diets. Although the tropical rain forests of Borneo are known for high mammalian diversity, little is known about the relationship between natural licks and mammals. To understand the use of natural licks by mammals and the role of natural licks to maintain the mammalian diversity and populations in Borneo, we conducted a field study in Deramakot Forest Reserve, Sabah. Twenty-nine species of mammals out of the 37 species known in the forests of Deramakot irrespective of food type were recorded on the natural licks. The mammals came to the natural licks to drink water rather than to eat soil. Analysis of the water from the natural licks showed that the concentrations of calcium, magnesium, potassium, and sodium as well as pH were significantly higher than those of the controls (stream and soil water). Foliar analysis of animal diets showed that potassium was significantly higher than sodium in concentration. This study indicated that the mammals might come for the ingestion of minerals, especially sodium, to maintain internal sodium/potassium balance. The natural licks are hot spots of mammalian diversity in Borneo because a cascade of food web (herbivores to carnivores) is formed
First molecular data of the Borneo Banteng Bos Javanicus lowi from Sabah, Borneo
Phylogenetic relationships among three subspecies of banteng, Burma banteng Bos javanicus birmanicus in mainland Southeast Asia, Javan banteng Bos javanicus javanicus in Java, and Bornean banteng Bos javanicus lowi in Borneo, and the presence/absence of interbreeding between wild Bornean banteng and domestic cattle in Sabah, Malaysia, were investigated by partial sequences of cytochrome b and D-loop of mitochondrial DNA. The results show that genetic distance of the Bornean banteng are relatively close to the gaur Bos gaurus/gayal Bos frontalis (the cytochrome b, 0.004–0.025; the D-loop, 0.012–0.021) followed by Burma banteng (the cytochrome b, 0.027–0.035; the D-loop, 0.040–0.045), and kouprey Bos sauveli (the cytochrome b, 0.031–0.035; the D-loop, 0.037–0.042). There are much greater distances between Bornean banteng and domestic cattle, Bos taurus and Bos indicus (the cytochrome b, 0.059–0.076; the D-loop, 0.081–0.090). These results suggest that the Bornean banteng diverged genetically from other banteng subspecies and that the wild Bornean banteng from this study are pure strain and have high conservation value
First molecular data on Bornean banteng Bos javanicus lowi (Cetartiodactyla, Bovidae) from Sabah, Malaysian Borneo
Phylogenetic relationships among three subspecies of banteng, Burma banteng Bos javanicus birmanicus in mainland Southeast Asia, Javan banteng Bos javanicus javanicus in Java, and Bornean banteng Bos javanicus lowi in Borneo, and the presence/absence of interbreeding between wild Bornean banteng and domestic cattle in Sabah, Malaysia, were investigated by partial sequences of cytochrome b and D-loop of mitochondrial DNA. The results show that genetic distance of the Bornean banteng are relatively close to the gaur Bos gaurus/gayal Bos frontalis (the cytochrome b, 0.004–0.025; the D-loop, 0.012–0.021) followed by Burma banteng (the cytochrome b, 0.027–0.035; the D-loop, 0.040–0.045), and kouprey Bos sauveli (the cytochrome b, 0.031–0.035; the D-loop, 0.037–0.042). There are much greater distances between Bornean banteng and domestic cattle, Bos taurus and Bos indicus (the cytochrome b, 0.059–0.076; the D-loop, 0.081–0.090). These results suggest that the Bornean banteng diverged genetically from other banteng subspecies and that the wild Bornean banteng from this study are pure strain and have high conservation value
A specific form of cPRC1 containing CBX4 is co-opted to mediate oncogenic gene repression in diffuse midline glioma
Diffuse midline glioma (DMG) is a fatal childhood brain tumor characterized primarily by mutant histone H3 (H3K27M). H3K27M causes a global reduction in Polycomb repressive complex 2 (PRC2)-mediated H3K27 trimethylation (H3K27me3). Paradoxically, PRC2 is essential in DMG cells, although the downstream molecular mechanisms are poorly understood. Here, we have discovered a specific form of canonical PRC1 (cPRC1) containing CBX4 and PCGF4 that drives oncogenic gene repression downstream of H3K27me3 in DMG cells. Via a novel functional region, CBX4 preferentially associates with PCGF4-containing cPRC1. The characteristic H3K27me3 landscape in DMG rewires the distribution of cPRC1 complexes, with CBX4/PCGF4-cPRC1 accumulating at H3K27me3-enriched CpG islands. Despite comprising <5% of cPRC1 in DMG cells, the unique repressive functions of CBX4/PCGF4-cPRC1 are essential for DMG growth. Our findings link the altered distribution of H3K27me3 to imbalanced cPRC1 function, which drives oncogenic gene repression in DMG, highlighting potential therapeutic opportunities for this incurable childhood brain cancer
Feasibility, acceptability and efficacy of a web-based computer-tailored physical activity intervention for pregnant women - the Fit4Two randomised controlled trial
Co-benefits of sustainable forest management in biodiversity conservation and carbon sequestration.
BACKGROUND: Sustainable forest management (SFM), which has been recently introduced to tropical natural production forests, is beneficial in maintaining timber resources, but information about the co-benefits for biodiversity conservation and carbon sequestration is currently lacking. METHODOLOGY/PRINCIPAL FINDINGS: We estimated the diversity of medium to large-bodied forest-dwelling vertebrates using a heat-sensor camera trapping system and the amount of above-ground, fine-roots, and soil organic carbon by a combination of ground surveys and aerial-imagery interpretations. This research was undertaken both in SFM applied as well as conventionally logged production forests in Sabah, Malaysian Borneo. Our carbon estimation revealed that the application of SFM resulted in a net gain of 54 Mg C ha(-1) on a landscape scale. Overall vertebrate diversity was greater in the SFM applied forest than in the conventionally logged forest. Specifically, several vertebrate species (6 out of recorded 36 species) showed higher frequency in the SFM applied forest than in the conventionally logged forest. CONCLUSIONS/SIGNIFICANCE: The application of SFM to degraded natural production forests could result in greater diversity and abundance of vertebrate species as well as increasing carbon storage in the tropical rain forest ecosystems
