22 research outputs found
Boosting care and knowledge about hereditary cancer: European Reference Network on Genetic Tumour Risk Syndromes
Approximately 27-36million patients in Europe have one of the similar to 5.000-8.000 known rare diseases. These patients often do not receive the care they need or they have a substantial delay from diagnosis to treatment. In March 2017, twenty-four European Reference Networks (ERNs) were launched with the aim to improve the care for these patients through cross border healthcare, in a way that the medical knowledge and expertise travels across the borders, rather than the patients. It is expected that through the ERNs, European patients with a rare disease get access to expert care more often and more quickly, and that research and guideline development will be accelerated resulting in improved diagnostics and therapies. The ERN on Genetic Tumour Risk Syndromes (ERN GENTURIS) aims to improve the identification, genetic diagnostics, prevention of cancer, and treatment of European patients with a genetic predisposition for cancer. The ERN GENTURIS focuses on syndromes such as hereditary breast cancer, hereditary colorectal cancer and polyposis, neurofibromatosis and more rare syndromes e.g. PTEN Hamartoma Tumour Syndrome, Li Fraumeni Syndrome and hereditary diffuse gastric cancer
26O Comprehensive genomic analysis of adrenocortical carcinoma reveals genetic profiles associated with patient survival
Using breast cancer risk factors of women to estimate incidence of breast cancer in their sisters
New evidence of ancestral polyploidy in the Genistoid legume Lupinus angustifolius L. (narrow-leafed lupin)
A genetic linkage map of Picea abies Karst., based on RAPD markers, as a tool in population genetics
New microsatellite markers for population studies of Phytophthora cinnamomi, an important global pathogen
Abstract Phytophthora cinnamomi is the causal agent of root rot, canker and dieback of thousands of plant species around the globe. This oomycete not only causes severe economic losses but also threatens natural ecosystems. In South Africa, P. cinnamomi affects eucalyptus, avocado, macadamia and indigenous fynbos. Despite being one of the most important plant pathogens with a global distribution, little information is available regarding origin, invasion history and population biology. This is partly due to the limited number of molecular markers available for studying P. cinnamomi. Using available genome sequences for three isolates of P. cinnamomi, sixteen polymorphic microsatellite markers were developed as a set of multiplexable markers for both PCR and Gene Scan assays. The application of these markers on P. cinnamomi populations from avocado production areas in South Africa revealed that they were all polymorphic in these populations. The markers developed in this study represent a valuable resource for studying the population biology and movement of P. cinnamomi and will aid in the understanding of the origin and invasion history of this important species
