277 research outputs found

    Systemic sclerosis is associated with specific alterations in gastrointestinal microbiota in two independent cohorts.

    Get PDF
    ObjectiveTo compare faecal microbial composition in patients with systemic sclerosis (SSc) from 2 independent cohorts with controls and to determine whether certain genera are associated with SSc-gastrointestinal tract (GIT) symptoms.DesignAdult patients with SSc from the University of California, Los Angeles (UCLA) and Oslo University Hospital (OUH) and healthy controls participated in this study (1:1:1). All participants provided stool specimens for 16S rRNA sequencing. Linear discriminant analysis effect size demonstrated genera with differential expression in SSc. Differential expression analysis for sequence count data identified specific genera associated with GIT symptoms as assessed by the GIT 2.0 questionnaire.ResultsThe UCLA-SSc and OUH-SSc cohorts were similar in age (52.1 and 60.5 years, respectively), disease duration (median (IQR): 6.6 (2.5-16.4) and 7.0 (1.0-19.2) years, respectively), gender distribution (88% and 71%, respectively), and GIT symptoms (mean (SD) total GIT 2.0 scores of 0.7 (0.6) and 0.6 (0.5), respectively). Principal coordinate analysis illustrated significant microbial community differences between SSc and controls (UCLA: p=0.001; OUH: p=0.002). Patients with SSc had significantly lower levels of commensal genera deemed to protect against inflammation, such as Bacteroides (UCLA and OUH), Faecalibacterium (UCLA), Clostridium (OUH); and significantly higher levels of pathobiont genera, such as Fusobacterium (UCLA), compared with controls. Increased abundance of Clostridium was associated with less severe GIT symptoms in both cohorts.ConclusionsThe present analysis detected specific aberrations in the lower GIT microbiota of patients with SSc from 2 geographically and ethnically distinct cohorts. These findings suggest that GIT dysbiosis may be a pathological feature of the SSc disease state

    Dietary Supplementation with Omega-3 Polyunsaturated Fatty Acids Reduces Opioid-Seeking Behaviors and Alters the Gut Microbiome.

    Get PDF
    Opioids are highly addictive substances with a relapse rate of over 90%. While preclinical models of chronic opioid exposure exist for studying opioid dependence, none recapitulate the relapses observed in human opioid addiction. The mechanisms associated with opioid dependence, the accompanying withdrawal symptoms, and the relapses that are often observed months or years after opioid dependence are poorly understood. Therefore, we developed a novel model of chronic opioid exposure whereby the level of administration is self-directed with periods of behavior acquisition, maintenance, and then extinction alternating with reinstatement. This profile arguably mirrors that seen in humans, with initial opioid use followed by alternating periods of abstinence and relapse. Recent evidence suggests that dietary interventions that reduce inflammation, including omega-3 polyunsaturated fatty acids (n-3 PUFAs), may reduce substance misuse liability. Using the self-directed intake model, we characterize the observed profile of opioid use and demonstrate that an n-3-PUFA-enriched diet ameliorates oxycodone-seeking behaviors in the absence of drug availability and reduces anxiety. Guided by the major role gut microbiota have on brain function, neuropathology, and anxiety, we profile the microbiome composition and the effects of chronic opioid exposure and n-3 PUFA supplementation. We demonstrate that the withdrawal of opioids led to a significant depletion in specific microbiota genera, whereas n-3 PUFA supplementation increased microbial richness, phylogenetic diversity, and evenness. Lastly, we examined the activation state of microglia in the striatum and found that n-3 PUFA supplementation reduced the basal activation state of microglia. These preclinical data suggest that a diet enriched in n-3 PUFAs could be used as a treatment to alleviate anxiety induced opioid-seeking behavior and relapse in human opioid addiction

    Development of the Infant Gut Microbiome Predicts Temperament Across the First Year of Life

    Get PDF
    Perturbations to the gut microbiome are implicated in altered neurodevelopmental trajectories that may shape life span risk for emotion dysregulation and affective disorders. However, the sensitive periods during which the microbiome may influence neurodevelopment remain understudied. We investigated relationships between gut microbiome composition across infancy and temperament at 12 months of age. In 67 infants, we examined if gut microbiome composition assessed at 1–3 weeks, 2, 6, and 12 months of age was associated with temperament at age 12 months. Stool samples were sequenced using the 16S Illumina MiSeq platform. Temperament was assessed using the Infant Behavior Questionnaire-Revised (IBQ-R). Beta diversity at age 1–3 weeks was associated with surgency/extraversion at age 12 months. Bifidobacterium and Lachnospiraceae abundance at 1–3 weeks of age was positively associated with surgency/extraversion at age 12 months. Klebsiella abundance at 1–3 weeks was negatively associated with surgency/extraversion at 12 months. Concurrent composition was associated with negative affectivity at 12 months, including a positive association with Ruminococcus-1 and a negative association with Lactobacillus. Our findings support a relationship between gut microbiome composition and infant temperament. While exploratory due to the small sample size, these results point to early and late infancy as sensitive periods during which the gut microbiome may exert effects on neurodevelopment

    Contact with Caregivers is Associated with Composition of the Infant Gastrointestinal Microbiome in the First 6 Months of Life

    Get PDF
    Objectives Little is known about how physical contact at birth and early caregiving environments influence the colonization of the infant gastrointestinal microbiome. We investigated how infant contact with caregivers at birth and within the first 2 weeks of life relates to the composition of the gastrointestinal microbiome in a sample of U.S. infants (n = 60). Methods Skin-to-skin and physical contact with caregivers at birth and early caregiving environments were surveyed at 2 weeks postpartum. Stool samples were collected from infants at 2 weeks, 2, 6, and 12 months of age and underwent 16S rRNA sequencing as a proxy for the gastrointestinal microbiome. Associations between early caregiving environments and alpha and beta diversity, and differential abundance of bacteria at the genus level were assessed using PERMANOVA, and negative binomial mixed models in DEseq2. Results Time in physical contact with caregivers explained 10% of variation in beta diversity at 2 weeks\u27 age. The number of caregivers in the first few weeks of life explained 9% of variation in beta diversity at 2 weeks and the number of individuals in physical contact at birth explained 11% of variation in beta diversity at 6 months. Skin-to-skin contact on the day of birth was positively associated with the abundance of eight genera. Infants held for by more individuals had greater abundance of eight genera. Discussion Results reveal a potential mechanism (skin-to-skin and physical contact) by which caregivers influence the infant gastrointestinal microbiome. Our findings contribute to work exploring the social transmission of microbes

    Microbial and Metabolite Signatures of Stress Reactivity in Ulcerative Colitis Patients in Clinical Remission Predict Clinical Flare Risk.

    Get PDF
    BACKGROUND: Stress reactivity (SR) is associated with increased risk of flares in ulcerative colitis (UC) patients. Because both preclinical and clinical data support that stress can influence gut microbiome composition and function, we investigated whether microbiome profiles of SR exist in UC. METHODS: Ninety-one UC subjects in clinical and biochemical remission were classified into high and low SR groups by questionnaires. Baseline and longitudinal characterization of the intestinal microbiome was performed by 16S rRNA gene sequencing and fecal and plasma global untargeted metabolomics. Microbe, fecal metabolite, and plasma metabolite abundances were analyzed separately to create random forest classifiers for high SR and biomarker-derived SR scores. RESULTS: High SR reactivity was characterized by altered abundance of fecal microbes, primarily in the Ruminococcaceae and Lachnospiraceae families; fecal metabolites including reduced levels of monoacylglycerols (endocannabinoid-related) and bile acids; and plasma metabolites including increased 4-ethyl phenyl sulfate, 1-arachidonoylglycerol (endocannabinoid), and sphingomyelin. Classifiers generated from baseline microbe, fecal metabolite, and plasma metabolite abundance distinguished high vs low SR with area under the receiver operating characteristic curve of 0.81, 0.83, and 0.91, respectively. Stress reactivity scores derived from these classifiers were significantly associated with flare risk during 6 to 24 months of follow-up, with odds ratios of 3.8, 4.1, and 4.9. Clinical flare and intestinal inflammation did not alter fecal microbial abundances but attenuated fecal and plasma metabolite differences between high and low SR. CONCLUSIONS: High SR in UC is characterized by microbial signatures that predict clinical flare risk, suggesting that the microbiome may contribute to stress-induced UC flares

    Maternal Manganese Restriction Increases Susceptibility to High-Fat Diet-Induced Dyslipidemia and Altered Adipose Function in WNIN Male Rat Offspring

    Get PDF
    Growth in utero is largely a reflection of nutrient and oxygen supply to the foetus. We studied the effects of Mn restriction per se, maternal Mn restriction, and postnatal high-fat feeding in modulating body composition, lipid metabolism and adipocyte function in Wistar/NIN (WNIN) rat offspring. Female weanling, WNIN rats received ad libitum for 4 months, a control or Mn-restricted diet and were mated with control males. Some restricted mothers were rehabilitated with control diet from conception (MnRC) or parturition (MnRP), and their offspring were raised on control diet. Some restricted offspring were weaned onto control diet (MnRW), while others continued on restricted diet throughout (MnR). A set of offspring from each group was fed high-fat diet from 9 months onwards. Body composition, adipocytes function, and lipid metabolism were monitored in male rat offspring at regular intervals. Maternal manganese restriction increased the susceptibility of the offspring to high-fat-induced adiposity, dyslipidaemia, and a proinflammatory state but did not affect their glycemic or insulin status
    corecore