345 research outputs found
Προσρόφηση εξασθενούς χρωμίου και φωσφορικών ιόντων σε οφιολιθικό έδαφος και οξείδια του σιδήρου.
Draft Genome of Scalindua rubra, Obtained from the Interface Above the Discovery Deep Brine in the Red Sea, Sheds Light on Potential Salt Adaptation Strategies in Anammox Bacteria
Several recent studies have indicated that members of the phylum Planctomycetes are abundantly present at the brine-seawater interface (BSI) above multiple brine pools in the Red Sea. Planctomycetes include bacteria capable of anaerobic ammonium oxidation (anammox). Here, we investigated the possibility of anammox at BSI sites using metagenomic shotgun sequencing of DNA obtained from the BSI above the Discovery Deep brine pool. Analysis of sequencing reads matching the 16S rRNA and hzsA genes confirmed presence of anammox bacteria of the genus Scalindua. Phylogenetic analysis of the 16S rRNA gene indicated that this Scalindua sp. belongs to a distinct group, separate from the anammox bacteria in the seawater column, that contains mostly sequences retrieved from high-salt environments. Using coverage- and composition-based binning, we extracted and assembled the draft genome of the dominant anammox bacterium. Comparative genomic analysis indicated that this Scalindua species uses compatible solutes for osmoadaptation, in contrast to other marine anammox bacteria that likely use a salt-in strategy. We propose the name Candidatus Scalindua rubra for this novel species, alluding to its discovery in the Red Sea
Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women
Recent findings suggest an association between obesity, loss of gut barrier
function and changes in microbiota profiles. Our primary objective was to
examine the effect of caloric restriction and subsequent weight reduction on
gut permeability in obese women. The impact on inflammatory markers and fecal
microbiota was also investigated. The 4-week very-low calorie diet (VLCD, 800
kcal/day) induced a mean weight loss of 6.9 ± 1.9 kg accompanied by a
reduction in HOMA-IR (Homeostasis model assessment-insulin resistance),
fasting plasma glucose and insulin, plasma leptin, and leptin gene expression
in subcutaneous adipose tissue. Plasma high-molecular weight adiponectin (HMW
adiponectin) was significantly increased after VLCD. Plasma levels of high-
sensitivity C-reactive protein (hsCRP) and lipopolysaccharide-binding protein
(LBP) were significantly decreased after 28 days of VLCD. Using three
different methods, gut paracellular permeability was decreased after VLCD.
These changes in clinical parameters were not associated with major consistent
changes in dominant bacterial communities in feces. In summary, a 4-week
caloric restriction resulted in significant weight loss, improved gut barrier
integrity and reduced systemic inflammation in obese women
Global Archaeal Diversity Revealed Through Massive Data Integration: Uncovering Just Tip of Iceberg
The domain of Archaea has gathered significant interest for its ecological and biotechnological potential and its role in helping us to understand the evolutionary history of Eukaryotes. In comparison to the bacterial domain, the number of adequately described members in Archaea is relatively low, with less than 1000 species described. It is not clear whether this is solely due to the cultivation difficulty of its members or, indeed, the domain is characterized by evolutionary constraints that keep the number of species relatively low. Based on molecular evidence that bypasses the difficulties of formal cultivation and characterization, several novel clades have been proposed, enabling insights into their metabolism and physiology. Given the extent of global sampling and sequencing efforts, it is now possible and meaningful to question the magnitude of global archaeal diversity based on molecular evidence. To do so, we extracted all sequences classified as Archaea from 500 thousand amplicon samples available in public repositories. After processing through our highly conservative pipeline, we named this comprehensive resource the 'Global Archaea Diversity' (GAD), which encompassed nearly 3 million molecular species clusters at 97% similarity, and organized it into over 500 thousand genera and nearly 100 thousand families. Saline environments have contributed the most to the novel taxa of this previously unseen diversity. The majority of those 16S rRNA gene sequence fragments were verified by matches in metagenomic datasets from IMG/M. These findings reveal a vast and previously overlooked diversity within the Archaea, offering insights into their ecological roles and evolutionary importance while establishing a foundation for the future study and characterization of this intriguing domain of life
Regulatory (pan-)genome of an obligate intracellular pathogen in the PVC superphylum.
Like other obligate intracellular bacteria, the Chlamydiae feature a compact regulatory genome that remains uncharted owing to poor genetic tractability. Exploiting the reduced number of transcription factors (TFs) encoded in the chlamydial (pan-)genome as a model for TF control supporting the intracellular lifestyle, we determined the conserved landscape of TF specificities by ChIP-Seq (chromatin immunoprecipitation-sequencing) in the chlamydial pathogen Waddlia chondrophila. Among 10 conserved TFs, Euo emerged as a master TF targeting >100 promoters through conserved residues in a DNA excisionase-like winged helix-turn-helix-like (wHTH) fold. Minimal target (Euo) boxes were found in conserved developmentally-regulated genes governing vertical genome transmission (cytokinesis and DNA replication) and genome plasticity (transposases). Our ChIP-Seq analysis with intracellular bacteria not only reveals that global TF regulation is maintained in the reduced regulatory genomes of Chlamydiae, but also predicts that master TFs interpret genomic information in the obligate intracellular α-proteobacteria, including the rickettsiae, from which modern day mitochondria evolved
Handling of spurious sequences affects the outcome of high-throughput 16S rRNA gene amplicon profiling
16S rRNA gene amplicon sequencing is a popular approach for studying microbiomes. However, some basic concepts have still not been investigated comprehensively. We studied the occurrence of spurious sequences using defined microbial communities based on data either from the literature or generated in three sequencing facilities and analyzed via both operational taxonomic units (OTUs) and amplicon sequence variants (ASVs) approaches. OTU clustering and singleton removal, a commonly used approach, delivered approximately 50% (mock communities) to 80% (gnotobiotic mice) spurious taxa. The fraction of spurious taxa was generally lower based on ASV analysis, but varied depending on the gene region targeted and the barcoding system used. A relative abundance of 0.25% was found as an effective threshold below which the analysis of spurious taxa can be prevented to a large extent in both OTU- and ASV-based analysis approaches. Using this cutoff improved the reproducibility of analysis, i.e., variation in richness estimates was reduced by 38% compared with singleton filtering using six human fecal samples across seven sequencing runs. Beta-diversity analysis of human fecal communities was markedly affected by both the filtering strategy and the type of phylogenetic distances used for comparison, highlighting the importance of carefully analyzing data before drawing conclusions on microbiome changes. In summary, handling of artifact sequences during bioinformatic processing of 16S rRNA gene amplicon data requires careful attention to avoid the generation of misleading findings. We propose the concept of effective richness to facilitate the comparison of alpha-diversity across studies
Namco:a microbiome explorer
16S rRNA gene profiling is currently the most widely used technique in microbiome research and allows the study of microbial diversity, taxonomic profiling, phylogenetics, functional and network analysis. While a plethora of tools have been developed for the analysis of 16S rRNA gene data, only a few platforms offer a user-friendly interface and none comprehensively covers the whole analysis pipeline from raw data processing down to complex analysis. We introduce Namco, an R shiny application that offers a streamlined interface and serves as a one-stop solution for microbiome analysis. We demonstrate Namco’s capabilities by studying the association between a rich fibre diet and the gut microbiota composition. Namco helped to prove the hypothesis that butyrate-producing bacteria are prompted by fibre-enriched intervention. Namco provides a broad range of features from raw data processing and basic statistics down to machine learning and network analysis, thus covering complex data analysis tasks that are not comprehensively covered elsewhere. Namco is freely available at https://exbio.wzw.tum.de/namco/.</p
Arrhythmic gut microbiome signatures predict risk of type 2 diabetes
Lifestyle, obesity, and the gut microbiome are important risk factors for metabolic disorders. We demonstrate in 1,976 subjects of a German population cohort (KORA) that specific microbiota members show 24-h oscillations in their relative abundance and identified 13 taxa with disrupted rhythmicity in type 2 diabetes (T2D). Cross-validated prediction models based on this signature similarly classified T2D. In an independent cohort (FoCus), disruption of microbial oscillation and the model for T2D classification was confirmed in 1,363 subjects. This arrhythmic risk signature was able to predict T2D in 699 KORA subjects 5 years after initial sampling, being most effective in combination with BMI. Shotgun metagenomic analysis functionally linked 26 metabolic pathways to the diurnal oscillation of gut bacteria. Thus, a cohort-specific risk pattern of arrhythmic taxa enables classification and prediction of T2D, suggesting a functional link between circadian rhythms and the microbiome in metabolic diseases. Reitmeier et al. show that specific gut microbes exhibit rhythmic oscillations in relative abundance and identified taxa with disrupted rhythmicity in individuals with type 2 diabetes (T2D). This arrhythmic signature contributed to the classification and prediction of T2D, suggesting functional links between circadian rhythmicity and the microbiome in metabolic diseases.</p
Supplementary data from: The gut microbiome in patients with Cushing’s syndrome is severely altered
HASH(0x7f8d2ce94b88
- …
