270 research outputs found
Quantum Correlations in Two-Particle Anderson Localization
We predict the quantum correlations between non-interacting particles
evolving simultaneously in a disordered medium. While the particle density
follows the single-particle dynamics and exhibits Anderson localization, the
two-particle correlation develops unique features that depend on the quantum
statistics of the particles and their initial separation. On short time scales,
the localization of one particle becomes dependent on whether the other
particle is localized or not. On long time scales, the localized particles show
oscillatory correlations within the localization length. These effects can be
observed in Anderson localization of non-classical light and ultra-cold atoms.Comment: 4 pages, 4 figures, comments welcom
Bloch oscillations of Path-Entangled Photons
We show that when photons in N-particle path entangled |N,0> + |0,N> state
undergo Bloch oscillations, they exhibit a periodic transition between
spatially bunched and antibunched states. The transition occurs even when the
photons are well separated in space. We study the scaling of the
bunching-antibunching period, and show it is proportional to 1/N.Comment: An error in figure 1b of the original manuscript was corrected, and
the period was redefine
Effect of Nonlinearity on Adiabatic Evolution of Light
We investigate the effect of nonlinearity in a system described by an adiabatically evolving Hamiltonian. Experiments are conducted in a three-core waveguide structure that is adiabatically varying with distance, in analogy to the stimulated Raman adiabatic passage process in atomic physics. In the linear regime, the system exhibits an adiabatic power transfer between two waveguides which are not directly coupled, with negligible power recorded in the intermediate coupling waveguide. In the presence of nonlinearity the adiabatic light passage is found to critically depend on the excitation power. We show how this effect is related to the destruction of the dark state formed in this configuration
Topological Pumping over a Photonic Fibonacci Quasicrystal
Quasiperiodic lattices have recently been shown to be a non-trivial
topological phase of matter. Charge pumping -- one of the hallmarks of
topological states of matter -- was recently realized for photons in a
one-dimensional (1D) off-diagonal Harper model implemented in a photonic
waveguide array. The topologically nontrivial 1D Fibonacci quasicrystal (QC) is
expected to facilitate a similar phenomenon, but its discrete nature and lack
of pumping parameter hinder the experimental study of such topological effects.
In this work we overcome these obstacles by utilizing a family of topologically
equivalent QCs which ranges from the Fibonacci QC to the Harper model.
Implemented in photonic waveguide arrays, we observe the topological properties
of this family, and perform a topological pumping of photons across a Fibonacci
QC.Comment: 5 pages, 4 figures, comments are welcom
Classical Diffusion of a quantum particle in a noisy environment
We study the spreading of a quantum-mechanical wavepacket in a
one-dimensional tight-binding model with a noisy potential, and analyze the
emergence of classical diffusion from the quantum dynamics due to decoherence.
We consider a finite correlation time of the noisy environment, and treat the
system by utilizing the separation of fast (dephasing) and slow (diffusion)
processes. We show that classical diffusive behavior emerges at long times, and
we calculate analytically the dependence of the classical diffusion coefficient
on the noise magnitude and correlation time. This method provides a general
solution to this problem for arbitrary conditions of the noisy environment. The
results are relevant to a large variety of physical systems, from electronic
transport in solid state physics, to light transmission in optical devices,
diffusion of excitons, and quantum computation
Realization of quantum walks with negligible decoherence in waveguide lattices
Quantum random walks are the quantum counterpart of classical random walks, and were recently studied in the context of quantum computation. Physical implementations of quantum walks have only been made in very small scale systems severely limited by decoherence. Here we show that the propagation of photons in waveguide lattices, which have been studied extensively in recent years, are essentially an implementation of quantum walks. Since waveguide lattices are easily constructed at large scales and display negligible decoherence, they can serve as an ideal and versatile experimental playground for the study of quantum walks and quantum algorithms. We experimentally observe quantum walks in large systems (similar to 100 sites) and confirm quantum walks effects which were studied theoretically, including ballistic propagation, disorder, and boundary related effects
- …
