27 research outputs found

    In Vitro Reassortment between Endemic H1N2 and 2009 H1N1 Pandemic Swine Influenza Viruses Generates Attenuated Viruses

    Get PDF
    The pandemic H1N1 (pH1N1) influenza virus was first reported in humans in the spring of 2009 and soon thereafter was identified in numerous species, including swine. Reassortant viruses, presumably arising from the co-infection of pH1N1 and endemic swine influenza virus (SIV), were subsequently identified from diagnostic samples collected from swine. In this study, co-infection of swine testicle (ST) cells with swine-derived endemic H1N2 (MN745) and pH1N1 (MN432) yielded two reassortant H1N2 viruses (R1 and R2), both possessing a matrix gene derived from pH1N1. In ST cells, the reassortant viruses had growth kinetics similar to the parental H1N2 virus and reached titers approximately 2 log10 TCID50/mL higher than the pH1N1 virus, while in A549 cells these viruses had similar growth kinetics. Intranasal challenge of pigs with H1N2, pH1N1, R1 or R2 found that all viruses were capable of infecting and transmitting between direct contact pigs as measured by real time reverse transcription PCR of nasal swabs. Lung samples were also PCR-positive for all challenge groups and influenza-associated microscopic lesions were detected by histology. Interestingly, infectious virus was detected in lung samples for pigs challenged with the parental H1N2 and pH1N1 at levels significantly higher than either reassortant virus despite similar levels of viral RNA. Results of our experiment suggested that the reassortant viruses generated through in vitro cell culture system were attenuated without gaining any selective growth advantage in pigs over the parental lineages. Thus, reassortant influenza viruses described in this study may provide a good system to study genetic basis of the attenuation and its mechanism

    Ultrasonic Treatment Induced Fluoride Conversion Coating without Pores for High Corrosion Resistance of Mg Alloy

    No full text
    Fluoride conversion (MgF2) coating with facile preparation and good adhesion is promising to protect Mg alloy, but defects of pores in the coating lead to limited corrosion resistance. In this study, a compact and dense MgF2 coating was prepared by the combination of fluoride treatment and ultrasonic treatment. The ultrasonically treated MgF2 coating showed a compact and dense structure without pores at the frequency of 28 kHz. The chemical compositions of the coating were mainly composed of F and Mg elements. The corrosion potential of the ultrasonically treated Mg alloy shifted towards the noble direction in the electrochemical tests. The corrosion current density decreased due to the protectiveness of MgF2 coating without defects of pores or cracks. During immersion tests for 24 h, the ultrasonically treated Mg alloy exhibited the lowest H2 evolution (0.32 mL/cm2) and pH value (7.3), which confirmed the enhanced anti-corrosion ability of MgF2 coating. Hence, the ultrasonically treated fluoride coating had great potentials for their use in anti-corrosion applications of Mg alloy.</jats:p

    Analysis of the Rolling Interface Contact Characteristics in Mixed Lubrication Based on Gaussian Distribution Theory

    No full text
    To reveal the influence of surface morphology characteristics in mixed lubrication on the contact characteristics of the rolling interface, a random three-dimensional rough surface model based on Gaussian distribution theory was established. The model utilizes the finite element method (FEM) to simulate the regular contact and tangential sliding behavior of micro-asperities at the rolling interface in mixed lubrication conditions. The connection bearing capacity of models with varied roughness in mixed lubrication was studied. Furthermore, the effect of various sliding and normal indentation amounts on the normal and friction stress was investigated. The simulation result reveals that the roughness of the surface influences the distribution of the lubricating oil film. The lubricating oil layer between the interfaces with a lower roughness has a higher bearing capacity due to its more uniform distribution of peaks and valleys. An increase in the normal indentation amount raises the friction stress and normal stress. In contrast, an increase in sliding lowers the normal pressure, substantially impacting the fluctuation of the friction coefficient dramatically. Finally, the random three-dimensional rough surface model is verified by comparing it with the experimental data in the related literature

    Computationally Efficient Direction Finding for a Mixture of Circular and Strictly Noncircular Sources with Uniform Rectangular Arrays

    No full text
    In this paper, a novel two-dimensional (2D) direction-of-arrival (DOA) estimation algorithm for the mixed circular and strictly noncircular sources is proposed. A general array model with a mixture of signals is firstly built based on uniform rectangular arrays (URAs), and then, the approach, which uses the rank-reduction-based ROOT-MUSIC, can solve 2D DOA estimation problem. Besides, the theoretical error of the proposed algorithm, a criterion of the performance for evaluation, is analyzed by the first-order Taylor expression using second-order statistics. As verified by the simulation results, a better DOA estimation performance and a lower computational complexity are achieved by the proposed algorithm than the existing methods resorting to the noncircularity of the incoming signals

    Multivariate visualization for atmospheric pollution

    Full text link

    Overexpression of <i>EiKCS</i> confers paraquat-tolerance in rice <i>(Oryza sativa</i> L.) by promoting polyamine pathway

    Full text link
    AbstractParaquat is an important bipyridine herbicide by acting on the photosynthetic system of the plants and generating reactive oxygen species leading to cell death, whereas the mechanism of the paraquat resistance remains to be explored. In this study, a putative paraquat-resistant gene EiKCS from goosegrass (Eleusine indica L.) was isolated and overexpressed in a transgenic rice (Oryza sativa L.). This transgenic rice (KCSox) was treated by exogenous spermidine and paraquat and then was analyzed by qualitative and quantitative proteomics. Overexpressing of EiKCS enhanced paraquat tolerance in KCSox by the accumulation of endogenous polyamines whose dominant presences of polyamines benzoylation derivatizations in rice were C18H20N2O2, C28H31N3O3, and C38H42N4O4. The mechanism underlying the improving tolerance enhanced antioxidant capacity of ROS systems and light-harvesting in photosynthesis in KCSox rice leaves to reducing paraquat toxicity. The protein β-Ketoacyl-CoA Synthase (EiKCS) encoded by the EiKCS gene promoted the synthesis and metabolism of proteins of the polyamine pathway. Three cofactors CERs were identified and positively correlated with the function of EiKCS on very-long-chain fatty acids (VLCFAs) biosynthesis via promoting the polyamine pathway and inhibiting the links with the TCA pathway and fatty acid pathway to responding to the paraquat tolerance in the KCSox rice, which also caused the prolongation of the overproduction of spermine and a transient increase of intracellular malondialdehyde (MDA). These results expanded the polyamines pathway manipulated in cereals using genetic engineering to clarify the mechanism of paraquat-tolerance.One Sentence SummaryA putative paraquat-resistant EiKCS gene from the goosegrass overexpressing in the rice resulted in the accumulation of polyamines, especially the spermine, and promoted the proteins in polyamine pathways by its EiKCS protein under paraquat stress.</jats:sec

    New Role of Antibody in Bacterial Isolation

    Full text link
    Abstract To eliminate the interference caused by Pseudomonas aeruginosa in the isolation of Salmonella, a rabbit polyclonal antibody against P. aeruginosa was prepared by inoculating four New Zealand rabbits with the pathogen. The antiserum was purified using saturated ammonium sulfate and added into Rappaport-Vassiliadis medium with soya (RVS) broth and Muller-Kauffmann tetrathionate novobiocin broth (MKTTn broth) to evaluate whether it could inhibit the growth of P. aeruginosa. Observations by scanning electron microscopy demonstrated that P. aeruginosa was attacked and destroyed by the antibody when incubated for 10 min at 37°C. The activity of the antibody was also effective against 11 other strains of P. aeruginosa. Twenty-six strains of Salmonella were mixed with P. aeruginosa in RVS and MKTTn broth at 37°C for 12 h, respectively, and the cultures were plated on Salmonella chromogenic medium (SCM; Oxoid, Basingstoke, UK). Only Salmonella grew on SCM; five colonies were randomly selected for identification by VITEK 2 (bioMérieux, Lyon, France). Additionally, when mixed with two strains of Enterobacter cloacae (ATCC 700323 and YG001), the prepared antibody did not affect the growth of E. cloacae. The results demonstrated that the microbicidal activity of the antibody did not affect the tested Salmonella sp. or E. cloacae strains. Therefore, the antibody generated could be used to increase the accuracy of Salmonella isolation.</jats:p

    Characterization of Metabolic Patterns in Mouse Spermatogenesis and Its Clinical Implications in Humans

    No full text
    Spermatogenesis is a complex process requiring precisely controlled metabolic adaptations. Although the genetic and cellular aspects of spermatogenesis have been extensively studied, the underlying metabolic mechanisms remain largely underexplored. In this study, we utilized STA-PUT technology to separate three key cell types involved in mouse spermatogenesis: pachytene spermatocytes (PAC), round spermatids (RS), and elongated spermatids (ES). A comprehensive untargeted metabolomic analysis revealed significant metabolic changes during spermatogenesis, such as reduced methylation-related metabolites and increased glycolytic intermediates and TCA cycle metabolites during ES. Moreover, metabolic differences between germ cells and somatic cells (Leydig and Sertoli cells) were highlighted, particularly in steroidogenesis and lipid metabolism. To investigate clinical relevance, we analyzed human seminal plasma. Samples from individuals with azoospermia displayed significant metabolic abnormalities, including reduced methionine, tryptophan, and arginine, which play vital roles in sperm development. Pathway enrichment analysis revealed disturbances in the metabolism of nucleotide, amino acid, and energy in azoospermia, suggesting potential biomarkers of male infertility. Our findings provide a comprehensive metabolic profile of spermatogenesis and suggest that metabolic alterations may be significant contributors to male infertility, particularly in cases of azoospermia
    corecore