16,826 research outputs found

    Parent-child relationships and dyadic friendship experiences as predictors of behavior problems in early adolescence

    Get PDF
    This study focused on support and conflict in parent–child relationships and dyadic friendships as predictors of behavior problems in early adolescence (n¼182; M age¼12.9 years, 51% female, 45% African American, 74% two-parent homes). Support and conflict in one relationship context were hypothesized to moderate the effects of experiences in the other relationship context. Adolescent-reported antisocial behavior was low when either parent–child relationships or friendships were low in conflict, and adolescent-reported depressed mood was low when either friendship conflict was low or parental support was high. Parent-reported antisocial behavior was high when high levels of conflict were reported in either parent–child or friendship relationships and adolescent-reported depressed mood was high when either parental or friendship support was low. Associations appear to be similar for boys and girls as no interactions involving gender were significant.

    Preconditioned iterative solution of the 2D Helmholtz equation

    Get PDF
    Using a finite element method to solve the Helmholtz equation leads to a sparse system of equations which in three dimensions is too large to solve directly. It is also non-Hermitian and highly indefinite and consequently difficult to solve iteratively. The approach taken in this paper is to precondition this linear system with a new preconditioner and then solve it iteratively using a Krylov subspace method. Numerical analysis shows the preconditioner to be effective on a simple 1D test problem, and results are presented showing considerable convergence acceleration for a number of different Krylov methods for more complex problems in 2D, as well as for the more general problem of harmonic disturbances to a non-stagnant steady flow

    The EM Algorithm in Genetics, Genomics and Public Health

    Full text link
    The popularity of the EM algorithm owes much to the 1977 paper by Dempster, Laird and Rubin. That paper gave the algorithm its name, identified the general form and some key properties of the algorithm and established its broad applicability in scientific research. This review gives a nontechnical introduction to the algorithm for a general scientific audience, and presents a few examples characteristic of its application.Comment: Published in at http://dx.doi.org/10.1214/08-STS270 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    SU(N) Fermions in a One-Dimensional Harmonic Trap

    Full text link
    We conduct a theoretical study of SU(N) fermions confined by a one-dimensional harmonic potential. Firstly, we introduce a new numerical approach for solving the trapped interacting few-body problem, by which one may obtain accurate energy spectra across the full range of interaction strengths. In the strong-coupling limit, we map the SU(N) Hamiltonian to a spin-chain model. We then show that an existing, extremely accurate ansatz - derived for a Heisenberg SU(2) spin chain - is extendable to these N-component systems. Lastly, we consider balanced SU(N) Fermi gases that have an equal number of particles in each spin state for N=2, 3, 4. In the weak- and strong-coupling regimes, we find that the ground-state energies rapidly converge to their expected values in the thermodynamic limit with increasing atom number. This suggests that the many-body energetics of N-component fermions may be accurately inferred from the corresponding few-body systems of N distinguishable particles.Comment: 15 pages, 6 figure

    The Role of Family-Based Designs in Genome-Wide Association Studies

    Full text link
    Genome-Wide Association Studies (GWAS) offer an exciting and promising new research avenue for finding genes for complex diseases. Traditional case-control and cohort studies offer many advantages for such designs. Family-based association designs have long been attractive for their robustness properties, but robustness can mean a loss of power. In this paper we discuss some of the special features of family designs and their relevance in the era of GWAS.Comment: Published in at http://dx.doi.org/10.1214/08-STS280 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Preconditioning harmonic unsteady potential flow calculations

    Get PDF
    This paper considers finite element discretisations of the Helmholtz equation and its generalisation arising from harmonic acoustics perturbations to a non-uniform steady potential flow. A novel elliptic, positive definite preconditioner, with a multigrid implementation, is used to accelerate the iterative convergence of Krylov subspace solvers. Both theory and numerical results show that for a model 1D Helmholtz test problem the preconditioner clusters the discrete system's eigenvalues and lowers its condition number to a level independent of grid resolution. For the 2D Helmholtz equation, grid independent convergence is achieved using a QMR Krylov solver, significantly outperforming the popular SSOR preconditioner. Impressive results are also presented on more complex domains, including an axisymmetric aircraft engine inlet with non-stagnant mean flow and modal boundary conditions

    An Explanation of the Very Low Radio Flux of Young Planet-mass Companions

    Full text link
    We report Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum upper limits for 5 planetary-mass companions DH Tau B, CT Cha B, GSC 6214-210 B, 1RXS 1609 B, and GQ Lup B. Our survey, together with other ALMA studies, have yielded null results for disks around young planet-mass companions and placed stringent dust mass upper limits, typically less than 0.1 M_earth, when assuming dust continuum is optically thin. Such low-mass gas/dust content can lead to a disk lifetime estimate (from accretion rates) much shorter than the age of the system. To alleviate this timescale discrepancy, we suggest that disks around wide companions might be very compact and optically thick, in order to sustain a few Myr of accretion yet have very weak (sub)millimeter flux so as to still be elusive to ALMA. Our order-of-magnitude estimate shows that compact optically-thick disks might be smaller than 1000 R_jup and only emit ~micro-Jy of flux in the (sub)millimeter, but their average temperature can be higher than that of circumstellar disks. The high disk temperature could impede satellite formation, but it also suggests that mid- to far-infrared might be more favorable than radio wavelengths to characterize disk properties. Finally, the compact disk size might imply that dynamical encounters between the companion and the star, or any other scatterers in the system, play a role in the formation of planetary-mass companions.Comment: Accepted for publication in A

    The Magellan Adaptive Secondary VisAO Camera: Diffraction- Limited Broadband Visible Imaging and 20mas Fiber Array IFS

    Full text link
    The Magellan Adaptive Secondary AO system, scheduled for first light in the fall of 2011, will be able to simultaneously perform diffraction limited AO science in both the mid-IR, using the BLINC/MIRAC4 10\{mu}m camera, and in the visible using our novel VisAO camera. The VisAO camera will be able to operate as either an imager, using a CCD47 with 8.5 mas pixels, or as an IFS, using a custom fiber array at the focal plane with 20 mas elements in its highest resolution mode. In imaging mode, the VisAO camera will have a full suite of filters, coronagraphic focal plane occulting spots, and SDI prism/filters. The imaging mode should provide ~20% mean Strehl diffraction-limited images over the band 0.5-1.0 \{mu}m. In IFS mode, the VisAO instrument will provide R~1,800 spectra over the band 0.6-1.05 \{mu}m. Our unprecedented 20 mas spatially resolved visible spectra would be the highest spatial resolution achieved to date, either from the ground or in space. We also present lab results from our recently fabricated advanced triplet Atmospheric Dispersion Corrector (ADC) and the design of our novel wide-field acquisition and active optics lens. The advanced ADC is designed to perform 58% better than conventional doublet ADCs and is one of the enabling technologies that will allow us to achieve broadband (0.5-1.0\{mu}m) diffraction limited imaging and wavefront sensing in the visible.Comment: Proceedings of the SPIE, 2010, Vol. 7736, 77362
    corecore