1,430 research outputs found
The Natural Logarithm on Time Scales
We define an appropriate logarithm function on time scales and present its
main properties. This gives answer to a question posed by M. Bohner in [J.
Difference Equ. Appl. {\bf 11} (2005), no. 15, 1305--1306].Comment: 6 page
The Effect of Indole-3-Acetic Acid (IAA) on the Activity Levels of Dehydrogenases in the Silkgland of Silkworm, Bombyx Mori L
The effect of indole-3-acetic acid (IAA) on the glucose-6-phosphate dehydrogenase (G-6-PDH),lactate dehydrogenase (LDH), glutamate dehydrogenase (GDH), iso-citrate dehydrogenase (ICDH), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) were studied
The stimulation of G-6-PDH activity in the silk gland of experimental larva indicates increased oxidation of glucose resulting in higher levels of NADPH. Increased G-6-PDH activity in the present study suggests this as compensatory mechanism to maintain the structural complexity, functional integrity and metabolic centrality of the cells
The activity of LDH, ICDH, MDH and SDH were increased in the silk gland of IAA treated larvae. The increased activity of the dehydrogenases may be attributed to increased turnover of aminoacids and oxidative metabolism in the silk gland.
The activity level of GDH was increased in silk gland which indicates the increased oxidation of glutamate
On approximate solutions of semilinear evolution equations
A general framework is presented to discuss the approximate solutions of an
evolution equation in a Banach space, with a linear part generating a semigroup
and a sufficiently smooth nonlinear part. A theorem is presented, allowing to
infer from an approximate solution the existence of an exact solution.
According to this theorem, the interval of existence of the exact solution and
the distance of the latter from the approximate solution can be evaluated
solving a one-dimensional "control" integral equation, where the unknown gives
a bound on the previous distance as a function of time. For example, the
control equation can be applied to the approximation methods based on the
reduction of the evolution equation to finite-dimensional manifolds: among
them, the Galerkin method is discussed in detail. To illustrate this framework,
the nonlinear heat equation is considered. In this case the control equation is
used to evaluate the error of the Galerkin approximation; depending on the
initial datum, this approach either grants global existence of the solution or
gives fairly accurate bounds on the blow up time.Comment: 33 pages, 10 figures. To appear in Rev. Math. Phys. (Shortened
version; the proof of Prop. 3.4. has been simplified
Monotone iterative procedure and systems of a finite number of nonlinear fractional differential equations
The aim of the paper is to present a nontrivial and natural extension of the
comparison result and the monotone iterative procedure based on upper and lower
solutions, which were recently established in (Wang et al. in Appl. Math. Lett.
25:1019-1024, 2012), to the case of any finite number of nonlinear fractional
differential equations.The author is very grateful to the reviewers for the remarks, which improved the final version of the manuscript. This
article was financially supported by University of Łódź as a part of donation for the research activities aimed at the
development of young scientists, grant no. 545/1117
Simulation-based reachability analysis for nonlinear systems using componentwise contraction properties
A shortcoming of existing reachability approaches for nonlinear systems is
the poor scalability with the number of continuous state variables. To mitigate
this problem we present a simulation-based approach where we first sample a
number of trajectories of the system and next establish bounds on the
convergence or divergence between the samples and neighboring trajectories. We
compute these bounds using contraction theory and reduce the conservatism by
partitioning the state vector into several components and analyzing contraction
properties separately in each direction. Among other benefits this allows us to
analyze the effect of constant but uncertain parameters by treating them as
state variables and partitioning them into a separate direction. We next
present a numerical procedure to search for weighted norms that yield a
prescribed contraction rate, which can be incorporated in the reachability
algorithm to adjust the weights to minimize the growth of the reachable set
A General Backwards Calculus of Variations via Duality
We prove Euler-Lagrange and natural boundary necessary optimality conditions
for problems of the calculus of variations which are given by a composition of
nabla integrals on an arbitrary time scale. As an application, we get
optimality conditions for the product and the quotient of nabla variational
functionals.Comment: Submitted to Optimization Letters 03-June-2010; revised 01-July-2010;
accepted for publication 08-July-201
A periodic boundary value problem for nonlinear singular differential systems with ‘maxima’
décembre 20052005/12 (N254)-2005/12.Appartient à l’ensemble documentaire : UnivJeun
A caricature of a singular curvature flow in the plane
We study a singular parabolic equation of the total variation type in one
dimension. The problem is a simplification of the singular curvature flow. We
show existence and uniqueness of weak solutions. We also prove existence of
weak solutions to the semi-discretization of the problem as well as convergence
of the approximating sequences. The semi-discretization shows that facets must
form. For a class of initial data we are able to study in details the facet
formation and interactions and their asymptotic behavior. We notice that our
qualitative results may be interpreted with the help of a special composition
of multivalued operators
Euler-Lagrange equations for composition functionals in calculus of variations on time scales
In this paper we consider the problem of the calculus of variations for a
functional which is the composition of a certain scalar function with the
delta integral of a vector valued field , i.e., of the form
. Euler-Lagrange
equations, natural boundary conditions for such problems as well as a necessary
optimality condition for isoperimetric problems, on a general time scale, are
given. A number of corollaries are obtained, and several examples illustrating
the new results are discussed in detail.Comment: Submitted 10-May-2009 to Discrete and Continuous Dynamical Systems
(DCDS-B); revised 10-March-2010; accepted 04-July-201
Stability of Conditionally Invariant Sets and Controlled Uncertain Dynamic Systems on Time Scales
A basic feedback control problem is that of obtaining some desired stability property from a system which contains uncertainties due to unknown inputs into the system. Despite such imperfect knowledge in the selected mathematical model, we often seek to devise controllers that will steer the system in a certain required fashion. Various classes of controllers whose design is based on the method of Lyapunov are known for both discrete [4], [10], [15], and continuous [3–9], [11] models described by difference and differential equations, respectively. Recently, a theory for what is known as dynamic systems on time scales has been built which incorporates both continuous and discrete times, namely, time as an arbitrary closed sets of reals, and allows us to handle both systems simultaneously [1], [2], [12], [13]. This theory permits one to get some insight into and better understanding of the subtle differences between discrete and continuous systems. We shall, in this paper, utilize the framework of the theory of dynamic systems on time scales to investigate the stability properties of conditionally invariant sets which are then applied to discuss controlled systems with uncertain elements. For the notion of conditionally invariant set and its stability properties, see [14]. Our results offer a new approach to the problem in question
- …
