474 research outputs found
Chaos and Exponentially Localized Eigenstates in Smooth Hamiltonian Systems
We present numerical evidence to show that the wavefunctions of smooth
classically chaotic Hamiltonian systems scarred by certain simple periodic
orbits are exponentially localized in the space of unperturbed basis states.
The degree of localization, as measured by the information entropy, is shown to
be correlated with the local phase space structure around the scarring orbit;
indicating sharp localization when the orbit undergoes a pitchfork bifurcation
and loses stability.Comment: 7pages including 7 figures. Submitted to PR
Local Scaling in Homogeneous Hamiltonian Systems
We study the local scaling properties associated with straight line periodic
orbits in homogeneous Hamiltonian systems, whose stability undergoes repeated
oscillations as a function of one parameter. We give strong evidence of local
scaling of the Poincar\'{e} section with exponents depending simply on the
degree of homogeneity of the potential.Comment: 10 pgs. Plain LaTex, Five Figs. in uuencoded, tar-compressed format.
To appear in Phys. Rev. Lett
Accuracy of Trace Formulas
Using quantum maps we study the accuracy of semiclassical trace formulas. The
role of chaos in improving the semiclassical accuracy, in some systems, is
demonstrated quantitatively. However, our study of the standard map cautions
that this may not be most general. While studying a sawtooth map we demonstrate
the rather remarkable fact that at the level of the time one trace even in the
presence of fixed points on singularities the trace formula may be exact, and
in any case has no logarithmic divergences observed for the quantum bakers map.
As a byproduct we introduce fantastic periodic curves akin to curlicues.Comment: 20 pages, uuencoded and gzipped, 1 LaTex text file and 9 PS files for
figure
Recurrence of fidelity in near integrable systems
Within the framework of simple perturbation theory, recurrence time of
quantum fidelity is related to the period of the classical motion. This
indicates the possibility of recurrence in near integrable systems. We have
studied such possibility in detail with the kicked rotor as an example. In
accordance with the correspondence principle, recurrence is observed when the
underlying classical dynamics is well approximated by the harmonic oscillator.
Quantum revivals of fidelity is noted in the interior of resonances, while
classical-quantum correspondence of fidelity is seen to be very short for
states initially in the rotational KAM region.Comment: 13 pages, 6 figure
Cyclic Identities Involving Jacobi Elliptic Functions. II
Identities involving cyclic sums of terms composed from Jacobi elliptic
functions evaluated at equally shifted points on the real axis were
recently found. These identities played a crucial role in discovering linear
superposition solutions of a large number of important nonlinear equations. We
derive four master identities, from which the identities discussed earlier are
derivable as special cases. Master identities are also obtained which lead to
cyclic identities with alternating signs. We discuss an extension of our
results to pure imaginary and complex shifts as well as to the ratio of Jacobi
theta functions.Comment: 38 pages. Modified and includes more new identities. A shorter
version of this will appear in J. Math. Phys. (May 2003
Entanglement transitions in random definite particle states
Entanglement within qubits are studied for the subspace of definite particle
states or definite number of up spins. A transition from an algebraic decay of
entanglement within two qubits with the total number of qubits, to an
exponential one when the number of particles is increased from two to three is
studied in detail. In particular the probability that the concurrence is
non-zero is calculated using statistical methods and shown to agree with
numerical simulations. Further entanglement within a block of qubits is
studied using the log-negativity measure which indicates that a transition from
algebraic to exponential decay occurs when the number of particles exceeds .
Several algebraic exponents for the decay of the log-negativity are
analytically calculated. The transition is shown to be possibly connected with
the changes in the density of states of the reduced density matrix, which has a
divergence at the zero eigenvalue when the entanglement decays algebraically.Comment: Substantially added content (now 24 pages, 5 figures) with a
discussion of the possible mechanism for the transition. One additional
author in this version that is accepted for publication in Phys. Rev.
Testing statistical bounds on entanglement using quantum chaos
Previous results indicate that while chaos can lead to substantial entropy
production, thereby maximizing dynamical entanglement, this still falls short
of maximality. Random Matrix Theory (RMT) modeling of composite quantum
systems, investigated recently, entails an universal distribution of the
eigenvalues of the reduced density matrices. We demonstrate that these
distributions are realized in quantized chaotic systems by using a model of two
coupled and kicked tops. We derive an explicit statistical universal bound on
entanglement, that is also valid for the case of unequal dimensionality of the
Hilbert spaces involved, and show that this describes well the bounds observed
using composite quantized chaotic systems such as coupled tops.Comment: 5 pages, 3 figures, to appear in PRL. New title. Revised abstract and
some changes in the body of the pape
Local Identities Involving Jacobi Elliptic Functions
We derive a number of local identities of arbitrary rank involving Jacobi
elliptic functions and use them to obtain several new results. First, we
present an alternative, simpler derivation of the cyclic identities discovered
by us recently, along with an extension to several new cyclic identities of
arbitrary rank. Second, we obtain a generalization to cyclic identities in
which successive terms have a multiplicative phase factor exp(2i\pi/s), where s
is any integer. Third, we systematize the local identities by deriving four
local ``master identities'' analogous to the master identities for the cyclic
sums discussed by us previously. Fourth, we point out that many of the local
identities can be thought of as exact discretizations of standard nonlinear
differential equations satisfied by the Jacobian elliptic functions. Finally,
we obtain explicit answers for a number of definite integrals and simpler forms
for several indefinite integrals involving Jacobi elliptic functions.Comment: 47 page
Entanglement production in Quantized Chaotic Systems
Quantum chaos is a subject whose major goal is to identify and to investigate
different quantum signatures of classical chaos. Here we study entanglement
production in coupled chaotic systems as a possible quantum indicator of
classical chaos. We use coupled kicked tops as a model for our extensive
numerical studies. We find that, in general, presence of chaos in the system
produces more entanglement. However, coupling strength between two subsystems
is also very important parameter for the entanglement production. Here we show
how chaos can lead to large entanglement which is universal and describable by
random matrix theory (RMT). We also explain entanglement production in coupled
strongly chaotic systems by deriving a formula based on RMT. This formula is
valid for arbitrary coupling strengths, as well as for sufficiently long time.
Here we investigate also the effect of chaos on the entanglement production for
the mixed initial state. We find that many properties of the mixed state
entanglement production are qualitatively similar to the pure state
entanglement production. We however still lack an analytical understanding of
the mixed state entanglement production in chaotic systems.Comment: 16 pages, 5 figures. To appear in Pramana:Journal of Physic
- …
