474 research outputs found

    Chaos and Exponentially Localized Eigenstates in Smooth Hamiltonian Systems

    Full text link
    We present numerical evidence to show that the wavefunctions of smooth classically chaotic Hamiltonian systems scarred by certain simple periodic orbits are exponentially localized in the space of unperturbed basis states. The degree of localization, as measured by the information entropy, is shown to be correlated with the local phase space structure around the scarring orbit; indicating sharp localization when the orbit undergoes a pitchfork bifurcation and loses stability.Comment: 7pages including 7 figures. Submitted to PR

    Local Scaling in Homogeneous Hamiltonian Systems

    Full text link
    We study the local scaling properties associated with straight line periodic orbits in homogeneous Hamiltonian systems, whose stability undergoes repeated oscillations as a function of one parameter. We give strong evidence of local scaling of the Poincar\'{e} section with exponents depending simply on the degree of homogeneity of the potential.Comment: 10 pgs. Plain LaTex, Five Figs. in uuencoded, tar-compressed format. To appear in Phys. Rev. Lett

    Accuracy of Trace Formulas

    Full text link
    Using quantum maps we study the accuracy of semiclassical trace formulas. The role of chaos in improving the semiclassical accuracy, in some systems, is demonstrated quantitatively. However, our study of the standard map cautions that this may not be most general. While studying a sawtooth map we demonstrate the rather remarkable fact that at the level of the time one trace even in the presence of fixed points on singularities the trace formula may be exact, and in any case has no logarithmic divergences observed for the quantum bakers map. As a byproduct we introduce fantastic periodic curves akin to curlicues.Comment: 20 pages, uuencoded and gzipped, 1 LaTex text file and 9 PS files for figure

    Recurrence of fidelity in near integrable systems

    Full text link
    Within the framework of simple perturbation theory, recurrence time of quantum fidelity is related to the period of the classical motion. This indicates the possibility of recurrence in near integrable systems. We have studied such possibility in detail with the kicked rotor as an example. In accordance with the correspondence principle, recurrence is observed when the underlying classical dynamics is well approximated by the harmonic oscillator. Quantum revivals of fidelity is noted in the interior of resonances, while classical-quantum correspondence of fidelity is seen to be very short for states initially in the rotational KAM region.Comment: 13 pages, 6 figure

    Cyclic Identities Involving Jacobi Elliptic Functions. II

    Full text link
    Identities involving cyclic sums of terms composed from Jacobi elliptic functions evaluated at pp equally shifted points on the real axis were recently found. These identities played a crucial role in discovering linear superposition solutions of a large number of important nonlinear equations. We derive four master identities, from which the identities discussed earlier are derivable as special cases. Master identities are also obtained which lead to cyclic identities with alternating signs. We discuss an extension of our results to pure imaginary and complex shifts as well as to the ratio of Jacobi theta functions.Comment: 38 pages. Modified and includes more new identities. A shorter version of this will appear in J. Math. Phys. (May 2003

    Entanglement transitions in random definite particle states

    Full text link
    Entanglement within qubits are studied for the subspace of definite particle states or definite number of up spins. A transition from an algebraic decay of entanglement within two qubits with the total number NN of qubits, to an exponential one when the number of particles is increased from two to three is studied in detail. In particular the probability that the concurrence is non-zero is calculated using statistical methods and shown to agree with numerical simulations. Further entanglement within a block of mm qubits is studied using the log-negativity measure which indicates that a transition from algebraic to exponential decay occurs when the number of particles exceeds mm. Several algebraic exponents for the decay of the log-negativity are analytically calculated. The transition is shown to be possibly connected with the changes in the density of states of the reduced density matrix, which has a divergence at the zero eigenvalue when the entanglement decays algebraically.Comment: Substantially added content (now 24 pages, 5 figures) with a discussion of the possible mechanism for the transition. One additional author in this version that is accepted for publication in Phys. Rev.

    Testing statistical bounds on entanglement using quantum chaos

    Full text link
    Previous results indicate that while chaos can lead to substantial entropy production, thereby maximizing dynamical entanglement, this still falls short of maximality. Random Matrix Theory (RMT) modeling of composite quantum systems, investigated recently, entails an universal distribution of the eigenvalues of the reduced density matrices. We demonstrate that these distributions are realized in quantized chaotic systems by using a model of two coupled and kicked tops. We derive an explicit statistical universal bound on entanglement, that is also valid for the case of unequal dimensionality of the Hilbert spaces involved, and show that this describes well the bounds observed using composite quantized chaotic systems such as coupled tops.Comment: 5 pages, 3 figures, to appear in PRL. New title. Revised abstract and some changes in the body of the pape

    Local Identities Involving Jacobi Elliptic Functions

    Get PDF
    We derive a number of local identities of arbitrary rank involving Jacobi elliptic functions and use them to obtain several new results. First, we present an alternative, simpler derivation of the cyclic identities discovered by us recently, along with an extension to several new cyclic identities of arbitrary rank. Second, we obtain a generalization to cyclic identities in which successive terms have a multiplicative phase factor exp(2i\pi/s), where s is any integer. Third, we systematize the local identities by deriving four local ``master identities'' analogous to the master identities for the cyclic sums discussed by us previously. Fourth, we point out that many of the local identities can be thought of as exact discretizations of standard nonlinear differential equations satisfied by the Jacobian elliptic functions. Finally, we obtain explicit answers for a number of definite integrals and simpler forms for several indefinite integrals involving Jacobi elliptic functions.Comment: 47 page

    Entanglement production in Quantized Chaotic Systems

    Full text link
    Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical studies. We find that, in general, presence of chaos in the system produces more entanglement. However, coupling strength between two subsystems is also very important parameter for the entanglement production. Here we show how chaos can lead to large entanglement which is universal and describable by random matrix theory (RMT). We also explain entanglement production in coupled strongly chaotic systems by deriving a formula based on RMT. This formula is valid for arbitrary coupling strengths, as well as for sufficiently long time. Here we investigate also the effect of chaos on the entanglement production for the mixed initial state. We find that many properties of the mixed state entanglement production are qualitatively similar to the pure state entanglement production. We however still lack an analytical understanding of the mixed state entanglement production in chaotic systems.Comment: 16 pages, 5 figures. To appear in Pramana:Journal of Physic
    corecore