862 research outputs found
Dark Ages Cold Period: A literature review and directions for future research
Several late Quaternary studies have recorded cold and disturbed climates centred during the mid-first millennium AD and discussed these conditions under the term ‘Dark Ages Cold Period’ (DACP). A review of 114 palaeoclimate papers indicated that cold climates were common in the Northern Hemisphere between AD 400 and 765. There are also suggestions that some regions may have been relatively wet during the DACP, while those around the Mediterranean and the China/Tibetan Plateau indicate coinciding droughts. A set of environmental responses, however, indicate a delayed DACP interval (AD 509–865) postdating the actual climate signal. Previously, the DACP has been linked with the North Atlantic ice-rafting event at about 1400 years ago, while some evidence suggests an involvement of the North Atlantic Oscillation and/or El Niño–Southern Oscillation. More recently, another proposed phase of widespread cooling, the ‘Late Antique Little Ice Age’ (LALIA), overlaps with the DACP and has been tentatively linked with volcanic aerosol and solar irradiance variations reinforcing the climatic downturn since AD 536. Importantly, a higher number of proxy records extending over the first millennium AD is required for more rigorous assessments of climate variability and the forcing during these centuries and to disentangle the DACP and LALIA fingerprints in the proxy data, particularly to determine whether the DACP and the LALIA are distinct features. Also a richer network of both climate and environmental proxies is needed to evaluate the human–environment interactions, during the historical Migration Period, and thus through the DACP
Aspects of Discrete Breathers and New Directions
We describe results concerning the existence proofs of Discrete Breathers
(DBs) in the two classes of dynamical systems with optical linear phonons and
with acoustic linear phonons. A standard approach is by continuation of DBs
from an anticontinuous limit. A new approach, which is purely variational, is
presented. We also review some numerical results on intraband DBs in random
nonlinear systems. Some non-conventional physical applications of DBs are
suggested. One of them is understanding slow relaxation properties of glassy
materials. Another one concerns energy focusing and transport in biomolecules
by targeted energy transfer of DBs. A similar theory could be used for
describing targeted charge transfer of nonlinear electrons (polarons) and, more
generally, for targeted transfer of several excitations (e.g. Davydov soliton).Comment: to appear in the Proceedings of NATO Advanced Research Workshop
"Nonlinearity and Disorder: Theory and Applications",
Tashkent,Uzbekistan,October 1-6, 200
Gross-Neveu Models, Nonlinear Dirac Equations, Surfaces and Strings
Recent studies of the thermodynamic phase diagrams of the Gross-Neveu model
(GN2), and its chiral cousin, the NJL2 model, have shown that there are phases
with inhomogeneous crystalline condensates. These (static) condensates can be
found analytically because the relevant Hartree-Fock and gap equations can be
reduced to the nonlinear Schr\"odinger equation, whose deformations are
governed by the mKdV and AKNS integrable hierarchies, respectively. Recently,
Thies et al have shown that time-dependent Hartree-Fock solutions describing
baryon scattering in the massless GN2 model satisfy the Sinh-Gordon equation,
and can be mapped directly to classical string solutions in AdS3. Here we
propose a geometric perspective for this result, based on the generalized
Weierstrass spinor representation for the embedding of 2d surfaces into 3d
spaces, which explains why these well-known integrable systems underlie these
various Gross-Neveu gap equations, and why there should be a connection to
classical string theory solutions. This geometric viewpoint may be useful for
higher dimensional models, where the relevant integrable hierarchies include
the Davey-Stewartson and Novikov-Veselov systems.Comment: 27 pages, 1 figur
Selected reactive oxygen species and antioxidant enzymes in common bean after Pseudomonas syringae pv. phaseolicola and Botrytis cinerea infection
Phaseolus vulgaris cv. Korona plants were
inoculated with the bacteria Pseudomonas syringae pv.
phaseolicola (Psp), necrotrophic fungus Botrytis cinerea
(Bc) or with both pathogens sequentially. The aim of the
experiment was to determine how plants cope with multiple
infection with pathogens having different attack strategy.
Possible suppression of the non-specific infection with
the necrotrophic fungus Bc by earlier Psp inoculation was
examined. Concentration of reactive oxygen species
(ROS), such as superoxide anion (O2
-) and H2O2 and
activities of antioxidant enzymes such as superoxide dismutase
(SOD), catalase (CAT) and peroxidase (POD) were
determined 6, 12, 24 and 48 h after inoculation. The
measurements were done for ROS cytosolic fraction and
enzymatic cytosolic or apoplastic fraction. Infection with
Psp caused significant increase in ROS levels since the
beginning of experiment. Activity of the apoplastic
enzymes also increased remarkably at the beginning of
experiment in contrast to the cytosolic ones. Cytosolic
SOD and guaiacol peroxidase (GPOD) activities achieved
the maximum values 48 h after treatment. Additional forms
of the examined enzymes after specific Psp infection were
identified; however, they were not present after single Bc
inoculation. Subsequent Bc infection resulted only in
changes of H2O2 and SOD that occurred to be especially
important during plant–pathogen interaction. Cultivar Korona
of common bean is considered to be resistant to Psp and mobilises its system upon infection with these bacteria.
We put forward a hypothesis that the extent of defence
reaction was so great that subsequent infection did not
trigger significant additional response
New Mechanics of Traumatic Brain Injury
The prediction and prevention of traumatic brain injury is a very important
aspect of preventive medical science. This paper proposes a new coupled
loading-rate hypothesis for the traumatic brain injury (TBI), which states that
the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an
impulsive loading that strikes the head in several coupled degrees-of-freedom
simultaneously. To show this, based on the previously defined covariant force
law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions
within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt
dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid
discontinuous deformations: translational dislocations and rotational
disclinations. Brain's dislocations and disclinations, caused by the
SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum
brain model.
Keywords: Traumatic brain injuries, coupled loading-rate hypothesis,
Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and
disclinationsComment: 18 pages, 1 figure, Late
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Seed bank dynamics govern persistence of Brassica hybrids in crop and natural habitats
This is the final version. Available on open access from Oxford University Press via the DOI in this record• Background and Aims: Gene flow from crops to their wild relatives has the potential to alter population growth rates and demography of hybrid populations, especially when a new crop has been genetically modified (GM). This study introduces a comprehensive approach to assess this potential for altered population fitness, and uses a combination of demographic data in two habitat types and mathematical (matrix) models that include crop rotations and outcrossing between parental species. • Methods: Full life-cycle demographic rates, including seed bank survival, of non-GM Brassica rapa x B. napus F1 hybrids and their parent species were estimated from experiments in both agricultural and semi-natural habitats. Altered fitness potential was modelled using periodic matrices including crop rotations and outcrossing between parent species. • Key Results: The demographic vital rates (i.e. For major stage transitions) of the hybrid population were intermediate between or lower than both parental species. The population growth rate (λ) of hybrids indicated decreases in both habitat types, and in a semi-natural habitat hybrids became extinct at two sites. Elasticity analyses indicated that seed bank survival was the greatest contributor to λ. In agricultural habitats, hybrid populations were projected to decline, but with persistence times up to 20 years. The seed bank survival rate was the main driver determining persistence. It was found that λ of the hybrids was largely determined by parental seed bank survival and subsequent replenishment of the hybrid population through outcrossing of B. Rapa with B. napus. • Conclusions: Hybrid persistence was found to be highly dependent on the seed bank, suggesting that targeting hybrid seed survival could be an important management option in controlling hybrid persistence. For local risk mitigation, an increased focus on the wild parent is suggested. Management actions, such as control of B. Rapa, could indirectly reduce hybrid populations by blocking hybrid replenishment.Biotechnology and Biological Sciences Research Council (BBSRC)Natural Environment Research Council (NERC
The synthetic bacterial lipopeptide Pam3CSK4 modulates respiratory syncytial virus infection independent of TLR activation
Respiratory syncytial virus (RSV) is an important cause of acute respiratory disease in infants, immunocompromised subjects and the elderly. However, it is unclear why most primary RSV infections are associated with relatively mild symptoms, whereas some result in severe lower respiratory tract infections and bronchiolitis. Since RSV hospitalization has been associated with respiratory bacterial co-infections, we have tested if bacterial Toll-like receptor (TLR) agonists influence RSVA2- GFP infection in human primary cells or cell lines. The synthetic bacterial lipopeptide Pam3-Cys-Ser-Lys4 (Pam3CSK4), the prototype ligand for the heterodimeric TLR1/TLR2 complex, enhanced RSV infection in primary epithelial, myeloid and lymphoid cells. Surprisingly, enhancement was optimal when lipopeptides and virus were added simultaneously, whereas addition of Pam3CSK4 immediately after infection had no effect. We have identified two structurally related lipopeptides without TLR-signaling capacity that also modulate RSV infection, whereas Pam3CSK4-reminiscent TLR1/2 agonists did not, and conclude that modulation of infection is independent of TLR activation. A similar TLR-independent enhancement of infection could also be demonstrated for wild-type RSV strains, and for HIV-1, measles virus and human metapneumovirus. We show that the effect of Pam3CSK4 is primarily mediated by enhanced binding of RSV to its target cells. The Npalmitoylated cystein
Alliances and evidence: Building the capacity and effectiveness of rural health advocacy in Australia
© 2018 The Authors. Australian Journal of Rural Health published by John Wiley & Sons Australia, Ltd on behalf of National Rural Health Alliance Ltd. This article describes two strategies that have strengthened the capacity and effectiveness of rural health advocacy in Australia over the past nearly three decades. The first is the development of the National Rural Health Alliance, an organisation that grew from strategic efforts to develop relationships between rural and remote health practitioners and organisations. The second is the development, organisation and use of data and evidence to highlight rural health needs. There has been important synergy between these two streams of activity, with research and evidence providing the tools and the National Rural Health Alliance providing the strategy and techniques to influence the rural and remote health care agenda
- …
