1,959 research outputs found

    Permutative categories, multicategories, and algebraic K-theory

    Full text link
    We show that the KK-theory construction of arXiv:math/0403403, which preserves multiplicative structure, extends to a symmetric monoidal closed bicomplete source category, with the multiplicative structure still preserved. The source category of arXiv:math/0403403, whose objects are permutative categories, maps fully and faithfully to the new source category, whose objects are (based) multicategories

    Distributional Sentence Entailment Using Density Matrices

    Full text link
    Categorical compositional distributional model of Coecke et al. (2010) suggests a way to combine grammatical composition of the formal, type logical models with the corpus based, empirical word representations of distributional semantics. This paper contributes to the project by expanding the model to also capture entailment relations. This is achieved by extending the representations of words from points in meaning space to density operators, which are probability distributions on the subspaces of the space. A symmetric measure of similarity and an asymmetric measure of entailment is defined, where lexical entailment is measured using von Neumann entropy, the quantum variant of Kullback-Leibler divergence. Lexical entailment, combined with the composition map on word representations, provides a method to obtain entailment relations on the level of sentences. Truth theoretic and corpus-based examples are provided.Comment: 11 page

    Abstract Tensor Systems as Monoidal Categories

    Full text link
    The primary contribution of this paper is to give a formal, categorical treatment to Penrose's abstract tensor notation, in the context of traced symmetric monoidal categories. To do so, we introduce a typed, sum-free version of an abstract tensor system and demonstrate the construction of its associated category. We then show that the associated category of the free abstract tensor system is in fact the free traced symmetric monoidal category on a monoidal signature. A notable consequence of this result is a simple proof for the soundness and completeness of the diagrammatic language for traced symmetric monoidal categories.Comment: Dedicated to Joachim Lambek on the occasion of his 90th birthda

    Between the umbrella and the elephant:Elections, ethnic negotiations and the politics of spirit possession in TESHI, ACCRA

    Get PDF
    This article focuses on a number of Ga spirit mediums located in Teshi, a neighbourhood of the Ghanaian capital, Accra. These individuals host foreign spirits from areas north of Ga territory, such as the modern Ashanti, Gonja and Dagomba regions. Such encounters of cross-cultural spirit possession have often been analysed in the scholarly literature as an embedded history of contact between peoples. These histories of ethnic or cultural contact - which inform cross-cultural spirit possession - are constantly re-imagined by spirit mediums and the broader community they service. How this re-imagination occurs, in conjunction with developments in the contemporary political and public spheres, is a theme that remains understudied. The perceived shifts in the contours of ethnic alliances and rivalries on a national scale, against the backdrop of modern Ghanaian party politics and the ever-changing relationships between the Ga and their northern neighbours, led to a thematic reconfiguration of possession practices in 2004. This ethnographic vignette details how spirit mediums were able to apply the ethnic and conceptual cultural divisions intrinsic to this corpus of ritual practice to a critique of national political events, producing a commentary, through possession, on the changing discourses on ethnicity and ethnic relations in the Ghanaian state

    Constructing applicative functors

    Get PDF
    Applicative functors define an interface to computation that is more general, and correspondingly weaker, than that of monads. First used in parser libraries, they are now seeing a wide range of applications. This paper sets out to explore the space of non-monadic applicative functors useful in programming. We work with a generalization, lax monoidal functors, and consider several methods of constructing useful functors of this type, just as transformers are used to construct computational monads. For example, coends, familiar to functional programmers as existential types, yield a range of useful applicative functors, including left Kan extensions. Other constructions are final fixed points, a limited sum construction, and a generalization of the semi-direct product of monoids. Implementations in Haskell are included where possible

    The Grail theorem prover: Type theory for syntax and semantics

    Full text link
    As the name suggests, type-logical grammars are a grammar formalism based on logic and type theory. From the prespective of grammar design, type-logical grammars develop the syntactic and semantic aspects of linguistic phenomena hand-in-hand, letting the desired semantics of an expression inform the syntactic type and vice versa. Prototypical examples of the successful application of type-logical grammars to the syntax-semantics interface include coordination, quantifier scope and extraction.This chapter describes the Grail theorem prover, a series of tools for designing and testing grammars in various modern type-logical grammars which functions as a tool . All tools described in this chapter are freely available

    Topos-Theoretic Extension of a Modal Interpretation of Quantum Mechanics

    Full text link
    This paper deals with topos-theoretic truth-value valuations of quantum propositions. Concretely, a mathematical framework of a specific type of modal approach is extended to the topos theory, and further, structures of the obtained truth-value valuations are investigated. What is taken up is the modal approach based on a determinate lattice \Dcal(e,R), which is a sublattice of the lattice \Lcal of all quantum propositions and is determined by a quantum state ee and a preferred determinate observable RR. Topos-theoretic extension is made in the functor category \Sets^{\CcalR} of which base category \CcalR is determined by RR. Each true atom, which determines truth values, true or false, of all propositions in \Dcal(e,R), generates also a multi-valued valuation function of which domain and range are \Lcal and a Heyting algebra given by the subobject classifier in \Sets^{\CcalR}, respectively. All true propositions in \Dcal(e,R) are assigned the top element of the Heyting algebra by the valuation function. False propositions including the null proposition are, however, assigned values larger than the bottom element. This defect can be removed by use of a subobject semi-classifier. Furthermore, in order to treat all possible determinate observables in a unified framework, another valuations are constructed in the functor category \Sets^{\Ccal}. Here, the base category \Ccal includes all \CcalR's as subcategories. Although \Sets^{\Ccal} has a structure apparently different from \Sets^{\CcalR}, a subobject semi-classifier of \Sets^{\Ccal} gives valuations completely equivalent to those in \Sets^{\CcalR}'s.Comment: LaTeX2

    The Lambek calculus with iteration: two variants

    Full text link
    Formulae of the Lambek calculus are constructed using three binary connectives, multiplication and two divisions. We extend it using a unary connective, positive Kleene iteration. For this new operation, following its natural interpretation, we present two lines of calculi. The first one is a fragment of infinitary action logic and includes an omega-rule for introducing iteration to the antecedent. We also consider a version with infinite (but finitely branching) derivations and prove equivalence of these two versions. In Kleene algebras, this line of calculi corresponds to the *-continuous case. For the second line, we restrict our infinite derivations to cyclic (regular) ones. We show that this system is equivalent to a variant of action logic that corresponds to general residuated Kleene algebras, not necessarily *-continuous. Finally, we show that, in contrast with the case without division operations (considered by Kozen), the first system is strictly stronger than the second one. To prove this, we use a complexity argument. Namely, we show, using methods of Buszkowski and Palka, that the first system is Π10\Pi_1^0-hard, and therefore is not recursively enumerable and cannot be described by a calculus with finite derivations

    Renormalization : A number theoretical model

    Get PDF
    We analyse the Dirichlet convolution ring of arithmetic number theoretic functions. It turns out to fail to be a Hopf algebra on the diagonal, due to the lack of complete multiplicativity of the product and coproduct. A related Hopf algebra can be established, which however overcounts the diagonal. We argue that the mechanism of renormalization in quantum field theory is modelled after the same principle. Singularities hence arise as a (now continuously indexed) overcounting on the diagonals. Renormalization is given by the map from the auxiliary Hopf algebra to the weaker multiplicative structure, called Hopf gebra, rescaling the diagonals.Comment: 15 pages, extended version of talks delivered at SLC55 Bertinoro,Sep 2005, and the Bob Delbourgo QFT Fest in Hobart, Dec 200
    corecore