488 research outputs found
Abstract Tensor Systems as Monoidal Categories
The primary contribution of this paper is to give a formal, categorical
treatment to Penrose's abstract tensor notation, in the context of traced
symmetric monoidal categories. To do so, we introduce a typed, sum-free version
of an abstract tensor system and demonstrate the construction of its associated
category. We then show that the associated category of the free abstract tensor
system is in fact the free traced symmetric monoidal category on a monoidal
signature. A notable consequence of this result is a simple proof for the
soundness and completeness of the diagrammatic language for traced symmetric
monoidal categories.Comment: Dedicated to Joachim Lambek on the occasion of his 90th birthda
Permutative categories, multicategories, and algebraic K-theory
We show that the -theory construction of arXiv:math/0403403, which
preserves multiplicative structure, extends to a symmetric monoidal closed
bicomplete source category, with the multiplicative structure still preserved.
The source category of arXiv:math/0403403, whose objects are permutative
categories, maps fully and faithfully to the new source category, whose objects
are (based) multicategories
Constructing applicative functors
Applicative functors define an interface to computation that is more general, and correspondingly weaker, than that of monads. First used in parser libraries, they are now seeing a wide range of applications. This paper sets out to explore the space of non-monadic applicative functors useful in programming. We work with a generalization, lax monoidal functors, and consider several methods of constructing useful functors of this type, just as transformers are used to construct computational monads. For example, coends, familiar to functional programmers as existential types, yield a range of useful applicative functors, including left Kan extensions. Other constructions are final fixed points, a limited sum construction, and a generalization of the semi-direct product of monoids. Implementations in Haskell are included where possible
Perverse coherent t-structures through torsion theories
Bezrukavnikov (later together with Arinkin) recovered the work of Deligne
defining perverse -structures for the derived category of coherent sheaves
on a projective variety. In this text we prove that these -structures can be
obtained through tilting torsion theories as in the work of Happel, Reiten and
Smal\o. This approach proves to be slightly more general as it allows us to
define, in the quasi-coherent setting, similar perverse -structures for
certain noncommutative projective planes.Comment: New revised version with important correction
The Grail theorem prover: Type theory for syntax and semantics
As the name suggests, type-logical grammars are a grammar formalism based on
logic and type theory. From the prespective of grammar design, type-logical
grammars develop the syntactic and semantic aspects of linguistic phenomena
hand-in-hand, letting the desired semantics of an expression inform the
syntactic type and vice versa. Prototypical examples of the successful
application of type-logical grammars to the syntax-semantics interface include
coordination, quantifier scope and extraction.This chapter describes the Grail
theorem prover, a series of tools for designing and testing grammars in various
modern type-logical grammars which functions as a tool . All tools described in
this chapter are freely available
The Lambek calculus with iteration: two variants
Formulae of the Lambek calculus are constructed using three binary
connectives, multiplication and two divisions. We extend it using a unary
connective, positive Kleene iteration. For this new operation, following its
natural interpretation, we present two lines of calculi. The first one is a
fragment of infinitary action logic and includes an omega-rule for introducing
iteration to the antecedent. We also consider a version with infinite (but
finitely branching) derivations and prove equivalence of these two versions. In
Kleene algebras, this line of calculi corresponds to the *-continuous case. For
the second line, we restrict our infinite derivations to cyclic (regular) ones.
We show that this system is equivalent to a variant of action logic that
corresponds to general residuated Kleene algebras, not necessarily
*-continuous. Finally, we show that, in contrast with the case without division
operations (considered by Kozen), the first system is strictly stronger than
the second one. To prove this, we use a complexity argument. Namely, we show,
using methods of Buszkowski and Palka, that the first system is -hard,
and therefore is not recursively enumerable and cannot be described by a
calculus with finite derivations
Variable binding, symmetric monoidal closed theories, and bigraphs
This paper investigates the use of symmetric monoidal closed (SMC) structure
for representing syntax with variable binding, in particular for languages with
linear aspects. In our setting, one first specifies an SMC theory T, which may
express binding operations, in a way reminiscent from higher-order abstract
syntax. This theory generates an SMC category S(T) whose morphisms are, in a
sense, terms in the desired syntax. We apply our approach to Jensen and
Milner's (abstract binding) bigraphs, which are linear w.r.t. processes. This
leads to an alternative category of bigraphs, which we compare to the original.Comment: An introduction to two more technical previous preprints. Accepted at
Concur '0
Topos theory and `neo-realist' quantum theory
Topos theory, a branch of category theory, has been proposed as mathematical
basis for the formulation of physical theories. In this article, we give a
brief introduction to this approach, emphasising the logical aspects. Each
topos serves as a `mathematical universe' with an internal logic, which is used
to assign truth-values to all propositions about a physical system. We show in
detail how this works for (algebraic) quantum theory.Comment: 22 pages, no figures; contribution for Proceedings of workshop
"Recent Developments in Quantum Field Theory", MPI MIS Leipzig, July 200
Semantics of a Typed Algebraic Lambda-Calculus
Algebraic lambda-calculi have been studied in various ways, but their
semantics remain mostly untouched. In this paper we propose a semantic analysis
of a general simply-typed lambda-calculus endowed with a structure of vector
space. We sketch the relation with two established vectorial lambda-calculi.
Then we study the problems arising from the addition of a fixed point
combinator and how to modify the equational theory to solve them. We sketch an
algebraic vectorial PCF and its possible denotational interpretations
Physics, Topology, Logic and Computation: A Rosetta Stone
In physics, Feynman diagrams are used to reason about quantum processes. In
the 1980s, it became clear that underlying these diagrams is a powerful analogy
between quantum physics and topology: namely, a linear operator behaves very
much like a "cobordism". Similar diagrams can be used to reason about logic,
where they represent proofs, and computation, where they represent programs.
With the rise of interest in quantum cryptography and quantum computation, it
became clear that there is extensive network of analogies between physics,
topology, logic and computation. In this expository paper, we make some of
these analogies precise using the concept of "closed symmetric monoidal
category". We assume no prior knowledge of category theory, proof theory or
computer science.Comment: 73 pages, 8 encapsulated postscript figure
- …
