488 research outputs found

    Abstract Tensor Systems as Monoidal Categories

    Full text link
    The primary contribution of this paper is to give a formal, categorical treatment to Penrose's abstract tensor notation, in the context of traced symmetric monoidal categories. To do so, we introduce a typed, sum-free version of an abstract tensor system and demonstrate the construction of its associated category. We then show that the associated category of the free abstract tensor system is in fact the free traced symmetric monoidal category on a monoidal signature. A notable consequence of this result is a simple proof for the soundness and completeness of the diagrammatic language for traced symmetric monoidal categories.Comment: Dedicated to Joachim Lambek on the occasion of his 90th birthda

    Permutative categories, multicategories, and algebraic K-theory

    Full text link
    We show that the KK-theory construction of arXiv:math/0403403, which preserves multiplicative structure, extends to a symmetric monoidal closed bicomplete source category, with the multiplicative structure still preserved. The source category of arXiv:math/0403403, whose objects are permutative categories, maps fully and faithfully to the new source category, whose objects are (based) multicategories

    Constructing applicative functors

    Get PDF
    Applicative functors define an interface to computation that is more general, and correspondingly weaker, than that of monads. First used in parser libraries, they are now seeing a wide range of applications. This paper sets out to explore the space of non-monadic applicative functors useful in programming. We work with a generalization, lax monoidal functors, and consider several methods of constructing useful functors of this type, just as transformers are used to construct computational monads. For example, coends, familiar to functional programmers as existential types, yield a range of useful applicative functors, including left Kan extensions. Other constructions are final fixed points, a limited sum construction, and a generalization of the semi-direct product of monoids. Implementations in Haskell are included where possible

    Perverse coherent t-structures through torsion theories

    Get PDF
    Bezrukavnikov (later together with Arinkin) recovered the work of Deligne defining perverse tt-structures for the derived category of coherent sheaves on a projective variety. In this text we prove that these tt-structures can be obtained through tilting torsion theories as in the work of Happel, Reiten and Smal\o. This approach proves to be slightly more general as it allows us to define, in the quasi-coherent setting, similar perverse tt-structures for certain noncommutative projective planes.Comment: New revised version with important correction

    The Grail theorem prover: Type theory for syntax and semantics

    Full text link
    As the name suggests, type-logical grammars are a grammar formalism based on logic and type theory. From the prespective of grammar design, type-logical grammars develop the syntactic and semantic aspects of linguistic phenomena hand-in-hand, letting the desired semantics of an expression inform the syntactic type and vice versa. Prototypical examples of the successful application of type-logical grammars to the syntax-semantics interface include coordination, quantifier scope and extraction.This chapter describes the Grail theorem prover, a series of tools for designing and testing grammars in various modern type-logical grammars which functions as a tool . All tools described in this chapter are freely available

    The Lambek calculus with iteration: two variants

    Full text link
    Formulae of the Lambek calculus are constructed using three binary connectives, multiplication and two divisions. We extend it using a unary connective, positive Kleene iteration. For this new operation, following its natural interpretation, we present two lines of calculi. The first one is a fragment of infinitary action logic and includes an omega-rule for introducing iteration to the antecedent. We also consider a version with infinite (but finitely branching) derivations and prove equivalence of these two versions. In Kleene algebras, this line of calculi corresponds to the *-continuous case. For the second line, we restrict our infinite derivations to cyclic (regular) ones. We show that this system is equivalent to a variant of action logic that corresponds to general residuated Kleene algebras, not necessarily *-continuous. Finally, we show that, in contrast with the case without division operations (considered by Kozen), the first system is strictly stronger than the second one. To prove this, we use a complexity argument. Namely, we show, using methods of Buszkowski and Palka, that the first system is Π10\Pi_1^0-hard, and therefore is not recursively enumerable and cannot be described by a calculus with finite derivations

    Variable binding, symmetric monoidal closed theories, and bigraphs

    Get PDF
    This paper investigates the use of symmetric monoidal closed (SMC) structure for representing syntax with variable binding, in particular for languages with linear aspects. In our setting, one first specifies an SMC theory T, which may express binding operations, in a way reminiscent from higher-order abstract syntax. This theory generates an SMC category S(T) whose morphisms are, in a sense, terms in the desired syntax. We apply our approach to Jensen and Milner's (abstract binding) bigraphs, which are linear w.r.t. processes. This leads to an alternative category of bigraphs, which we compare to the original.Comment: An introduction to two more technical previous preprints. Accepted at Concur '0

    Topos theory and `neo-realist' quantum theory

    Full text link
    Topos theory, a branch of category theory, has been proposed as mathematical basis for the formulation of physical theories. In this article, we give a brief introduction to this approach, emphasising the logical aspects. Each topos serves as a `mathematical universe' with an internal logic, which is used to assign truth-values to all propositions about a physical system. We show in detail how this works for (algebraic) quantum theory.Comment: 22 pages, no figures; contribution for Proceedings of workshop "Recent Developments in Quantum Field Theory", MPI MIS Leipzig, July 200

    Semantics of a Typed Algebraic Lambda-Calculus

    Full text link
    Algebraic lambda-calculi have been studied in various ways, but their semantics remain mostly untouched. In this paper we propose a semantic analysis of a general simply-typed lambda-calculus endowed with a structure of vector space. We sketch the relation with two established vectorial lambda-calculi. Then we study the problems arising from the addition of a fixed point combinator and how to modify the equational theory to solve them. We sketch an algebraic vectorial PCF and its possible denotational interpretations

    Physics, Topology, Logic and Computation: A Rosetta Stone

    Full text link
    In physics, Feynman diagrams are used to reason about quantum processes. In the 1980s, it became clear that underlying these diagrams is a powerful analogy between quantum physics and topology: namely, a linear operator behaves very much like a "cobordism". Similar diagrams can be used to reason about logic, where they represent proofs, and computation, where they represent programs. With the rise of interest in quantum cryptography and quantum computation, it became clear that there is extensive network of analogies between physics, topology, logic and computation. In this expository paper, we make some of these analogies precise using the concept of "closed symmetric monoidal category". We assume no prior knowledge of category theory, proof theory or computer science.Comment: 73 pages, 8 encapsulated postscript figure
    corecore