303 research outputs found
Approximating the Termination Value of One-Counter MDPs and Stochastic Games
One-counter MDPs (OC-MDPs) and one-counter simple stochastic games (OC-SSGs)
are 1-player, and 2-player turn-based zero-sum, stochastic games played on the
transition graph of classic one-counter automata (equivalently, pushdown
automata with a 1-letter stack alphabet). A key objective for the analysis and
verification of these games is the termination objective, where the players aim
to maximize (minimize, respectively) the probability of hitting counter value
0, starting at a given control state and given counter value. Recently, we
studied qualitative decision problems ("is the optimal termination value = 1?")
for OC-MDPs (and OC-SSGs) and showed them to be decidable in P-time (in NP and
coNP, respectively). However, quantitative decision and approximation problems
("is the optimal termination value ? p", or "approximate the termination value
within epsilon") are far more challenging. This is so in part because optimal
strategies may not exist, and because even when they do exist they can have a
highly non-trivial structure. It thus remained open even whether any of these
quantitative termination problems are computable. In this paper we show that
all quantitative approximation problems for the termination value for OC-MDPs
and OC-SSGs are computable. Specifically, given a OC-SSG, and given epsilon >
0, we can compute a value v that approximates the value of the OC-SSG
termination game within additive error epsilon, and furthermore we can compute
epsilon-optimal strategies for both players in the game. A key ingredient in
our proofs is a subtle martingale, derived from solving certain LPs that we can
associate with a maximizing OC-MDP. An application of Azuma's inequality on
these martingales yields a computable bound for the "wealth" at which a "rich
person's strategy" becomes epsilon-optimal for OC-MDPs.Comment: 35 pages, 1 figure, full version of a paper presented at ICALP 2011,
invited for submission to Information and Computatio
Utility of a fretting device working under free displacement
Relative movements of low amplitudes between two materials in contact are generally reproduced on fretting devices with imposed displacement or imposed tangential force. The damage kinetics observed (cracking, wear) is established under such conditions. In this article, a fretting device working under free displacement is used to characterize the damages generated by seizure and wear. The conditions of seizure are analyzed from the total sliding distance and the discussion is focused on a correlation established with Dupre's work of adhesion. The wear behavior of materials has been characterized from an energetic wear coefficient taking into account the wear volume of contact, the total sliding distance and the dissipated energy
The Shape of Gravity in a Warped Deformed Conifold
We study the spectrum of the gravitational modes in Minkowski spacetime due
to a 6-dimensional warped deformed conifold, i.e., a warped throat, in
superstring theory. After identifying the zero mode as the usual 4D graviton,
we present the KK spectrum as well as other excitation modes. Gluing the throat
to the bulk (a realistic scenario), we see that the graviton has a rather
uniform probability distribution everywhere while a KK mode is peaked in the
throat, as expected. Due to the suppressed measure of the throat in the wave
function normalization, we find that a KK mode's probability in the bulk can be
comparable to that of the graviton mode. We also present the tunneling
probabilities of a KK mode from the inflationary throat to the bulk and to
another throat. Due to resonance effect, the latter may not be suppressed as
natively expected. Implication of this property to reheating after brane
inflation is discussed
Caustic Formation in Tachyon Effective Field Theories
Certain configurations of D-branes, for example wrong dimensional branes or
the brane-antibrane system, are unstable to decay. This instability is
described by the appearance of a tachyonic mode in the spectrum of open strings
ending on the brane(s). The decay of these unstable systems is described by the
rolling of the tachyon field from the unstable maximum to the minimum of its
potential. We analytically study the dynamics of the inhomogeneous tachyon
field as it rolls towards the true vacuum of the theory in the context of
several different tachyon effective actions. We find that the vacuum dynamics
of these theories is remarkably similar and in particular we show that in all
cases the tachyon field forms caustics where second and higher derivatives of
the field blow up. The formation of caustics signals a pathology in the
evolution since each of the effective actions considered is not reliable in the
vicinity of a caustic. We speculate that the formation of caustics is an
artifact of truncating the tachyon action, which should contain all orders of
derivatives acting on the field, to a finite number of derivatives. Finally, we
consider inhomogeneous solutions in p-adic string theory, a toy model of the
bosonic tachyon which contains derivatives of all orders acting on the field.
For a large class of initial conditions we conclusively show that the evolution
is well behaved in this case. It is unclear if these caustics are a genuine
prediction of string theory or not.Comment: 23 pages, 5 figures; accepted for publication in JHEP. Revised
derivation of eikonal equation for the DBI action. Added comments concerning
the relationship between p-adic string theory and tachyon matter. Added
second example of inhomogeneous evolution in p-adic string theory. Misleading
statements concerning caustic-free evolution removed, references adde
Time Evolution in Superstring Field Theory on non-BPS brane.I. Rolling Tachyon and Energy-Momentum Conservation
We derive equations of motion for the tachyon field living on an unstable
non-BPS D-brane in the level truncated open cubic superstring field theory in
the first non-trivial approximation. We construct a special time dependent
solution to this equation which describes the rolling tachyon. It starts from
the perturbative vacuum and approaches one of stable vacua in infinite time. We
investigate conserved energy functional and show that its different parts
dominate in different stages of the evolution. We show that the pressure for
this solution has its minimum at zero time and goes to minus energy at infinite
time.Comment: 16 pages, 5 figures; minor correction
Warped Reheating in Multi-Throat Brane Inflation
We investigate in some quantitative details the viability of reheating in
multi-throat brane inflationary scenarios by estimating and comparing the time
scales for the various processes involved. We also calculate within
perturbative string theory the decay rate of excited closed strings into KK
modes and compare with that of their decay into gravitons; we find that in the
inflationary throat the former is preferred. We also find that over a small but
reasonable range of parameters of the background geometry, these KK modes will
preferably tunnel to another throat (possibly containing the Standard Model)
instead of decaying to gravitons due largely to their suppressed coupling to
the bulk gravitons. Once tunneled, the same suppressed coupling to the
gravitons again allows them to reheat the Standard Model efficiently. We also
consider the effects of adding more throats to the system and find that for
extra throats with small warping, reheating still seems viable.Comment: 29 pages, 4 figures, discussions on closed string decay expanded,
references adde
Inflation from Warped Space
A long period of inflation can be triggered when the inflaton is held up on
the top of a steep potential by the infrared end of a warped space. We first
study the field theory description of such a model. We then embed it in the
flux stabilized string compactification. Some special effects in the throat
reheating process by relativistic branes are discussed. We put all these
ingredients into a multi-throat brane inflationary scenario. The resulting
cosmic string tension and a multi-throat slow-roll model are also discussed.Comment: 39 pages; v4, added reference, to appear in JHE
Thermoelectric effects in superconducting proximity structures
Attaching a superconductor in good contact with a normal metal makes rise to
a proximity effect where the superconducting correlations leak into the normal
metal. An additional contact close to the first one makes it possible to carry
a supercurrent through the metal. Forcing this supercurrent flow along with an
additional quasiparticle current from one or many normal-metal reservoirs makes
rise to many interesting effects. The supercurrent can be used to tune the
local energy distribution function of the electrons. This mechanism also leads
to finite thermoelectric effects even in the presence of electron-hole
symmetry. Here we review these effects and discuss to which extent the existing
observations of thermoelectric effects in metallic samples can be explained
through the use of the dirty-limit quasiclassical theory.Comment: 14 pages, 10 figures. 374th WE-Heraus seminar: Spin physics of
superconducting heterostructures, Bad Honnef, 200
D-brane anti-D-brane effective action and brane interaction in open string channel
We construct the effective action of a -brane-anti--brane system by
making use of the non-abelian extension of tachyonic DBI action. We succeed the
construction by restricting the Chan-Paton factors of two non-BPS -branes
in the action to the Chan-Paton factors of a system. For the
special case that both branes are coincident, the action reduces to the one
proposed by A. Sen. \\The effective potential indicates that
when branes separation is larger than the string length scale, there are two
minima in the tachyon direction. As branes move toward each other under the
gravitational force, the tachyon tunneling from false to true vacuum may make a
bubble formation followed by a classical evolution of the bubble. On the other
hand, when branes separation is smaller than the string length scale, the
potential shows one maximum and one minimum. In this case, a homogeneous
tachyon rolling in real time makes an attractive potential for the branes
distance. This classical force is speculated to be the effective force between
the two branes.Comment: Latex, 14 pages, 1 figure, the version appears in JHE
- …
