3,406 research outputs found
Privacy preserving, real-time and location secured biometrics for mCommerce authentication
Secure wireless connectivity between mobile devices and financial/commercial establishments is mature, and so is the security of remote authentication for mCommerce. However, the current techniques are open for hacking, false misrepresentation, replay and other attacks. This is because of the lack of real-time and current-precise-location in the authentication process. This paper proposes a new technique that includes freshly-generated real-time personal biometric data of the client and present-position of the mobile device used by the client to perform the mCommerce so to form a real-time biometric representation to authenticate any remote transaction. A fresh GPS fix generates the "time and location" to stamp the biometric data freshly captured to produce a single, real-time biometric representation on the mobile device. A trusted Certification Authority (CA) acts as an independent authenticator of such client's claimed real time location and his/her provided fresh biometric data. Thus eliminates the necessity of user enrolment with many mCommerce services and application providers. This CA can also "independently from the client" and "at that instant of time" collect the client's mobile device "time and location" from the cellular network operator so to compare with the received information, together with the client's stored biometric information. Finally, to preserve the client's location privacy and to eliminate the possibility of cross-application client tracking, this paper proposes shielding the real location of the mobile device used prior to submission to the CA or authenticators
Proceedings of the workshop "Standard Model at the LHC" University College London 30 March - 1 April 2009
Proceedings from a 3-day discussion on Standard Model discoveries with the
first LHC dataComment: 9 contributions to the proceedings of the LHC Standard Model worksho
Entanglement-Saving Channels
The set of Entanglement Saving (ES) quantum channels is introduced and
characterized. These are completely positive, trace preserving transformations
which when acting locally on a bipartite quantum system initially prepared into
a maximally entangled configuration, preserve its entanglement even when
applied an arbitrary number of times. In other words, a quantum channel
is said to be ES if its powers are not entanglement-breaking for all
integers . We also characterize the properties of the Asymptotic
Entanglement Saving (AES) maps. These form a proper subset of the ES channels
that is constituted by those maps which, not only preserve entanglement for all
finite , but which also sustain an explicitly not null level of entanglement
in the asymptotic limit~. Structure theorems are provided
for ES and for AES maps which yield an almost complete characterization of the
former and a full characterization of the latter.Comment: 26 page
eBiometrics: an enhanced multi-biometrics authentication technique for real-time remote applications on mobile devices
The use of mobile communication devices with advance sensors is growing rapidly. These sensors are enabling functions such as Image capture, Location applications, and Biometric authentication such as Fingerprint verification and Face & Handwritten signature recognition. Such ubiquitous devices are essential tools in today's global economic activities enabling anywhere-anytime financial and business transactions. Cryptographic functions and biometric-based authentication can enhance the security and confidentiality of mobile transactions. Using Biometric template security techniques in real-time biometric-based authentication are key factors for successful identity verification solutions, but are venerable to determined attacks by both fraudulent software and hardware. The EU-funded SecurePhone project has designed and implemented a multimodal biometric user authentication system on a prototype mobile communication device. However, various implementations of this project have resulted in long verification times or reduced accuracy and/or security. This paper proposes to use built-in-self-test techniques to ensure no tampering has taken place on the verification process prior to performing the actual biometric authentication. These techniques utilises the user personal identification number as a seed to generate a unique signature. This signature is then used to test the integrity of the verification process. Also, this study proposes the use of a combination of biometric modalities to provide application specific authentication in a secure environment, thus achieving optimum security level with effective processing time. I.e. to ensure that the necessary authentication steps and algorithms running on the mobile device application processor can not be undermined or modified by an imposter to get unauthorized access to the secure system
Mass of the b-quark and B-decay constants from Nf=2+1+1 twisted-mass Lattice QCD
We present precise lattice computations for the b-quark mass, the quark mass
ratios mb/mc and mb/ms as well as the leptonic B-decay constants. We employ
gauge configurations with four dynamical quark flavors, up/down, strange and
charm, at three values of the lattice spacing (a ~ 0.06 - 0.09 fm) and for pion
masses as low as 210 MeV. Interpolation in the heavy quark mass to the bottom
quark point is performed using ratios of physical quantities computed at nearby
quark masses exploiting the fact that these ratios are exactly known in the
static quark mass limit. Our results are also extrapolated to the physical pion
mass and to the continuum limit and read: mb(MSbar, mb) = 4.26(10) GeV, mb/mc =
4.42(8), mb/ms = 51.4(1.4), fBs = 229(5) MeV, fB = 193(6) MeV, fBs/fB =
1.184(25) and (fBs/fB)/(fK/fpi) = 0.997(17).Comment: Version to appear in PRD. Added comments to simulation setup and
error budget discussion. 1+20 pages, 9 figure
A New Scintillator Tile/Fiber Preshower Detector for the CDF Central Calorimeter
A detector designed to measure early particle showers has been installed in
front of the central CDF calorimeter at the Tevatron. This new preshower
detector is based on scintillator tiles coupled to wavelength-shifting fibers
read out by multi-anode photomultipliers and has a total of 3,072 readout
channels. The replacement of the old gas detector was required due to an
expected increase in instantaneous luminosity of the Tevatron collider in the
next few years. Calorimeter coverage, jet energy resolution, and electron and
photon identification are among the expected improvements. The final detector
design, together with the R&D studies that led to the choice of scintillator
and fiber, mechanical assembly, and quality control are presented. The detector
was installed in the fall 2004 Tevatron shutdown and started collecting
colliding beam data by the end of the same year. First measurements indicate a
light yield of 12 photoelectrons/MIP, a more than two-fold increase over the
design goals.Comment: 5 pages, 10 figures (changes are minor; this is the final version
published in IEEE-Trans.Nucl.Sci.
Forward Physics at the LHC (Elba 2010)
The papers review the main theoretical and experimental aspects of the
Forward Physics at the Large Hadron Collider
Multiphoton radiative recombination of electron assisted by laser field
In the presence of an intensive laser field the radiative recombination of
the continuum electron into an atomic bound state generally is accompanied by
absorption or emission of several laser quanta. The spectrum of emitted photons
represents an equidistant pattern with the spacing equal to the laser
frequency. The distribution of intensities in this spectrum is studied
employing the Keldysh-type approximation, i.e. neglecting interaction of the
impact electron with the atomic core in the initial continuum state. Within the
adiabatic approximation the scale of emitted photon frequencies is subdivided
into classically allowed and classically forbidden domains. The highest
intensities correspond to emission frequencies close to the edges of
classically allowed domain. The total cross section of electron recombination
summed over all emitted photon channels exhibits negligible dependence on the
laser field intensity.Comment: 14 pages, 5 figures (Figs.2-5 have "a" and "b" parts), Phys.Rev.A
accepted for publication. Fig.2b is presented correctl
Strong subadditivity for log-determinant of covariance matrices and its applications
We prove that the log-determinant of the covariance matrix obeys the strong subadditivity inequality for arbitrary tripartite states of multimode continuous variable quantum systems. This establishes general limitations on the distribution of information encoded in the second moments of canonically conjugate operators. The inequality is shown to be stronger than the conventional strong subadditivity inequality for von Neumann entropy in a class of pure tripartite Gaussian states. We finally show that such an inequality implies a strict monogamy-type constraint for joint Einstein-Podolsky-Rosen steerability of single modes by Gaussian measurements performed on multiple groups of modes
- …
