30 research outputs found

    Detecting and correcting partial errors: Evidence for efficient control without conscious access

    Get PDF
    Appropriate reactions to erroneous actions are essential to keeping behavior adaptive. Erring, however, is not an all-or-none process: electromyographic (EMG) recordings of the responding muscles have revealed that covert incorrect response activations (termed "partial errors") occur on a proportion of overtly correct trials. The occurrence of such "partial errors" shows that incorrect response activations could be corrected online, before turning into overt errors. In the present study, we showed that, unlike overt errors, such "partial errors" are poorly consciously detected by participants, who could report only one third of their partial errors. Two parameters of the partial errors were found to predict detection: the surface of the incorrect EMG burst (larger for detected) and the correction time (between the incorrect and correct EMG onsets; longer for detected). These two parameters provided independent information. The correct(ive) responses associated with detected partial errors were larger than the "pure-correct" ones, and this increase was likely a consequence, rather than a cause, of the detection. The respective impacts of the two parameters predicting detection (incorrect surface and correction time), along with the underlying physiological processes subtending partial-error detection, are discussed

    Relative judgement is relatively difficult: evidence against the role of relative judgement in absolute identification

    Get PDF
    A variety of processes have been put forward to explain absolute identification performance. One difference between current models of absolute identification is the extent to which the task involves accessing stored representations in long-term memory (e.g. exemplars in memory, Kent & Lamberts, Journal of Experimental Psychology: Learning Memory and Cognition, 31, 289–305, 2005) or relative judgement (comparison of the current stimulus to the stimulus on the previous trial, Stewart, Brown & Chater, Psychological Review, 112, 881–911, 2005). In two experiments we explored this by tapping into these processes. In Experiment 1 participants completed an absolute identification task using eight line lengths whereby a single stimulus was presented on each trial for identification. They also completed a matching task aimed at mirroring exemplar comparison in which eight line lengths were presented in a circular array and the task was to report which of these matched a target presented centrally. Experiment 2 was a relative judgement task and was similar to Experiment 1 except that the task was to report the difference (jump-size) between the current stimulus and that on the previous trial. The absolute identification and matching data showed clear similarities (faster and more accurate responding for stimuli near the edges of the range and similar stimulus-response confusions). In contrast, relative judgment performance was poor suggesting relative judgement is not straightforward. Moreover, performance as a function of jump-size differed considerably between the relative judgement and absolute identification tasks. Similarly, in the relative judgement task, predicting correct stimulus identification based on successful relative judgement yielded the reverse pattern of performance observed in the absolute identification task. Overall, the data suggest that relative judgement does not underlie absolute identification and that the task is more likely reliant on an exemplar comparison process

    Testing theories of post-error slowing

    Get PDF
    People tend to slow down after they make an error. This phenomenon, generally referred to as post-error slowing, has been hypothesized to reflect perceptual distraction, time wasted on irrelevant processes, an a priori bias against the response made in error, increased variability in a priori bias, or an increase in response caution. Although the response caution interpretation has dominated the empirical literature, little research has attempted to test this interpretation in the context of a formal process model. Here, we used the drift diffusion model to isolate and identify the psychological processes responsible for post-error slowing. In a very large lexical decision data set, we found that post-error slowing was associated with an increase in response caution and—to a lesser extent—a change in response bias. In the present data set, we found no evidence that post-error slowing is caused by perceptual distraction or time wasted on irrelevant processes. These results support a response-monitoring account of post-error slowing

    Sequential Sampling Models in Cognitive Neuroscience: Advantages, Applications, and Extensions

    Get PDF
    Sequential sampling models assume that people make speeded decisions by gradually accumulating noisy information until a threshold of evidence is reached. In cognitive science, one such model—the diffusion decision model—is now regularly used to decompose task performance into underlying processes such as the quality of information processing, response caution, and a priori bias. In the cognitive neurosciences, the diffusion decision model has recently been adopted as a quantitative tool to study the neural basis of decision making under time pressure. We present a selective overview of several recent applications and extensions of the diffusion decision model in the cognitive neurosciences
    corecore