1,244 research outputs found

    Sampling constrained probability distributions using Spherical Augmentation

    Full text link
    Statistical models with constrained probability distributions are abundant in machine learning. Some examples include regression models with norm constraints (e.g., Lasso), probit, many copula models, and latent Dirichlet allocation (LDA). Bayesian inference involving probability distributions confined to constrained domains could be quite challenging for commonly used sampling algorithms. In this paper, we propose a novel augmentation technique that handles a wide range of constraints by mapping the constrained domain to a sphere in the augmented space. By moving freely on the surface of this sphere, sampling algorithms handle constraints implicitly and generate proposals that remain within boundaries when mapped back to the original space. Our proposed method, called {Spherical Augmentation}, provides a mathematically natural and computationally efficient framework for sampling from constrained probability distributions. We show the advantages of our method over state-of-the-art sampling algorithms, such as exact Hamiltonian Monte Carlo, using several examples including truncated Gaussian distributions, Bayesian Lasso, Bayesian bridge regression, reconstruction of quantized stationary Gaussian process, and LDA for topic modeling.Comment: 41 pages, 13 figure

    Non-abelian Action for Multiple Five-Branes with Self-Dual Tensors

    Full text link
    We construct an action for non-abelian 2-form in 6-dimensions. Our action consists of a non-abelian generalization of the abelian action of Perry and Schwarz for a single five-brane. It admits a self-duality equation on the field strength as the equation of motion. It has a modified 6d Lorentz symmetry. On dimensional reduction on a circle, our action gives the standard 5d Yang-Mills action plus higher order corrections. Based on these properties, we propose that our theory describes the gauge sector of multiple M5-branes in flat space.Comment: LaTeX, 26 pages. v2: improved discussion of Lorentz symmetry. ref added. v3: add comments in the discussion section on the inclusion of scalar fields and supersymmetry; title changed to a more suitable one; version published in JHE

    Suppression of MAPK11 or HIPK3 reduces mutant Huntingtin levels in Huntington's disease models.

    Get PDF
    Most neurodegenerative disorders are associated with accumulation of disease-relevant proteins. Among them, Huntington disease (HD) is of particular interest because of its monogenetic nature. HD is mainly caused by cytotoxicity of the defective protein encoded by the mutant Huntingtin gene (HTT). Thus, lowering mutant HTT protein (mHTT) levels would be a promising treatment strategy for HD. Here we report two kinases HIPK3 and MAPK11 as positive modulators of mHTT levels both in cells and in vivo. Both kinases regulate mHTT via their kinase activities, suggesting that inhibiting these kinases may have therapeutic values. Interestingly, their effects on HTT levels are mHTT-dependent, providing a feedback mechanism in which mHTT enhances its own level thus contributing to mHTT accumulation and disease progression. Importantly, knockout of MAPK11 significantly rescues disease-relevant behavioral phenotypes in a knockin HD mouse model. Collectively, our data reveal new therapeutic entry points for HD and target-discovery approaches for similar diseases

    The Inflammatory Kinase MAP4K4 Promotes Reactivation of Kaposi's Sarcoma Herpesvirus and Enhances the Invasiveness of Infected Endothelial Cells

    Get PDF
    Kaposi's sarcoma (KS) is a mesenchymal tumour, which is caused by Kaposi's sarcoma herpesvirus (KSHV) and develops under inflammatory conditions. KSHV-infected endothelial spindle cells, the neoplastic cells in KS, show increased invasiveness, attributed to the elevated expression of metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2). The majority of these spindle cells harbour latent KSHV genomes, while a minority undergoes lytic reactivation with subsequent production of new virions and viral or cellular chemo- and cytokines, which may promote tumour invasion and dissemination. In order to better understand KSHV pathogenesis, we investigated cellular mechanisms underlying the lytic reactivation of KSHV. Using a combination of small molecule library screening and siRNA silencing we found a STE20 kinase family member, MAP4K4, to be involved in KSHV reactivation from latency and to contribute to the invasive phenotype of KSHV-infected endothelial cells by regulating COX-2, MMP-7, and MMP-13 expression. This kinase is also highly expressed in KS spindle cells in vivo. These findings suggest that MAP4K4, a known mediator of inflammation, is involved in KS aetiology by regulating KSHV lytic reactivation, expression of MMPs and COX-2, and, thereby modulating invasiveness of KSHV-infected endothelial cells. © 2013 Haas et al

    The evolutionary signal in metagenome phyletic profiles predicts many gene functions

    Get PDF
    Background. The function of many genes is still not known even in model organisms. An increasing availability of microbiome DNA sequencing data provides an opportunity to infer gene function in a systematic manner. Results. We evaluated if the evolutionary signal contained in metagenome phyletic profiles (MPP) is predictive of a broad array of gene functions. The MPPs are an encoding of environmental DNA sequencing data that consists of relative abundances of gene families across metagenomes. We find that such MPPs can accurately predict 826 Gene Ontology functional categories, while drawing on human gut microbiomes, ocean metagenomes, and DNA sequences from various other engineered and natural environments. Overall, in this task, the MPPs are highly accurate, and moreover they provide coverage for a set of Gene Ontology terms largely complementary to standard phylogenetic profiles, derived from fully sequenced genomes. We also find that metagenomes approximated from taxon relative abundance obtained via 16S rRNA gene sequencing may provide surprisingly useful predictive models. Crucially, the MPPs derived from different types of environments can infer distinct, non-overlapping sets of gene functions and therefore complement each other. Consistently, simulations on > 5000 metagenomes indicate that the amount of data is not in itself critical for maximizing predictive accuracy, while the diversity of sampled environments appears to be the critical factor for obtaining robust models. Conclusions. In past work, metagenomics has provided invaluable insight into ecology of various habitats, into diversity of microbial life and also into human health and disease mechanisms. We propose that environmental DNA sequencing additionally constitutes a useful tool to predict biological roles of genes, yielding inferences out of reach for existing comparative genomics approaches

    The PHF21B gene is associated with major depression and modulates the stress response

    Get PDF
    Major depressive disorder (MDD) affects around 350 million people worldwide; however, the underlying genetic basis remains largely unknown. In this study, we took into account that MDD is a gene-environment disorder, in which stress is a critical component, and used whole-genome screening of functional variants to investigate the 'missing heritability' in MDD. Genome-wide association studies (GWAS) using single- and multi-locus linear mixed-effect models were performed in a Los Angeles Mexican-American cohort (196 controls, 203 MDD) and in a replication European-ancestry cohort (499 controls, 473 MDD). Our analyses took into consideration the stress levels in the control populations. The Mexican-American controls, comprised primarily of recent immigrants, had high levels of stress due to acculturation issues and the European-ancestry controls with high stress levels were given higher weights in our analysis. We identified 44 common and rare functional variants associated with mild to moderate MDD in the Mexican-American cohort (genome-wide false discovery rate, FDR, <0.05), and their pathway analysis revealed that the three top overrepresented Gene Ontology (GO) processes were innate immune response, glutamate receptor signaling and detection of chemical stimulus in smell sensory perception. Rare variant analysis replicated the association of the PHF21B gene in the ethnically unrelated European-ancestry cohort. The TRPM2 gene, previously implicated in mood disorders, may also be considered replicated by our analyses. Whole-genome sequencing analyses of a subset of the cohorts revealed that European-ancestry individuals have a significantly reduced (50%) number of single nucleotide variants compared with Mexican-American individuals, and for this reason the role of rare variants may vary across populations. PHF21b variants contribute significantly to differences in the levels of expression of this gene in several brain areas, including the hippocampus. Furthermore, using an animal model of stress, we found that Phf21b hippocampal gene expression is significantly decreased in animals resilient to chronic restraint stress when compared with non-chronically stressed animals. Together, our results reveal that including stress level data enables the identification of novel rare functional variants associated with MDD.M-L Wong, M Arcos-Burgos, S Liu, J I Vélez, C Yu, B T Baune, M C Jawahar, V Arolt, U Dannlowski, A Chuah, G A Huttley, R Fogarty, M D Lewis, S R Bornstein, and J Licini

    Genome-wide association study identifies multiple susceptibility loci for glioma

    Get PDF
    Previous genome-wide association studies (GWASs) have shown that common genetic variation contributes to the heritable risk of glioma. To identify new glioma susceptibility loci, we conducted a meta-analysis of four GWAS (totalling 4,147 cases and 7,435 controls), with imputation using 1000 Genomes and UK10K Project data as reference. After genotyping an additional 1,490 cases and 1,723 controls we identify new risk loci for glioblastoma (GBM) at 12q23.33 (rs3851634, near POLR3B, P=3.02 × 10−9) and non-GBM at 10q25.2 (rs11196067, near VTI1A, P=4.32 × 10−8), 11q23.2 (rs648044, near ZBTB16, P=6.26 × 10−11), 12q21.2 (rs12230172, P=7.53 × 10−11) and 15q24.2 (rs1801591, near ETFA, P=5.71 × 10−9). Our findings provide further insights into the genetic basis of the different glioma subtypes

    K13 blocks KSHV lytic replication and deregulates vIL6 nad hIL6 expression: A model of lytic replication induced clonal selection in viral oncogenesis

    Get PDF
    Background. Accumulating evidence suggests that dysregulated expression of lytic genes plays an important role in KSHV (Kaposi's sarcoma associated herpesvirus) tumorigenesis. However, the molecular events leading to the dysregulation of KSHV lytic gene expression program are incompletely understood. Methodoloxy/Principal Findings. We have studied the effect of KSHV-encoded latent protein vFLIP K13, a potent activator of the NF-κB pathway, on lytic reactivation of the virus. We demonstrate that K13 antagonizes RTA, the KSHV lytic-regulator, and effectively blocks the expression of lytic proteins, production of infectious virions and death of the infected cells. Induction of lytic replication selects for clones with increased K13 expression and NF-κB activity, while siRNA-mediated silencing of K13 induces the expression of lytic genes. However, the suppressive effect of K13 on RTA-induced lytic genes is not uniform and it falls to block RTA-induced viral IL6 secretion and cooperates with RTA to enhance cellular IL-6 production, thereby dysregulating the lytic gene expression program. Conclusions/Significance. Our results support a model in which ongoing KSHV, lytic replication selects for clones with progressively higher levels of K13 expression and NF-κB activity, which in turn drive KSHV tumorigenesis by not only directly stimulating cellular survival and proliferation, but also indirectly by dysregulating the viral lytic gene program and allowing non-lytic production of growth-promoting viral and cellular genes. Lytic Replication-Induced Clonal Selection (LyRICS) may represent a general mechanism in viral oncogenesis. 2007 Zhao et al

    Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC

    Get PDF
    This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing

    A Kinase-Phosphatase Network that Regulates Kinetochore-Microtubule Attachments and the SAC

    Get PDF
    The KMN network (for KNL1, MIS12 and NDC80 complexes) is a hub for signalling at the outer kinetochore. It integrates the activities of two kinases (MPS1 and Aurora B) and two phosphatases (PP1 and PP2A-B56) to regulate kinetochore-microtubule attachments and the spindle assembly checkpoint (SAC). We will first discuss each of these enzymes separately, to describe how they are regulated at kinetochores and why this is important for their primary function in controlling either microtubule attachments or the SAC. We will then discuss why inhibiting any one of them individually produces secondary effects on all the others. This cross-talk may help to explain why all enzymes have been linked to both processes, even though the direct evidence suggests they each control only one. This chapter therefore describes how a network of kinases and phosphatases work together to regulate two key mitotic processes.</p
    corecore