4,167 research outputs found
Single-layer behavior and slow carrier density dynamic of twisted graphene bilayer
We report scanning tunneling microscopy (STM) and spectroscopy (STS) of
twisted graphene bilayer on SiC substrate. For twist angle ~ 4.5o the Dirac
point ED is located about 0.40 eV below the Fermi level EF due to the electron
doping at the graphene/SiC interface. We observed an unexpected result that the
local Dirac point around a nanoscaled defect shifts towards the Fermi energy
during the STS measurements (with a time scale about 100 seconds). This
behavior was attributed to the decoupling between the twisted graphene and the
substrate during the measurements, which lowers the carrier density of graphene
simultaneously
Electronic Structures of Graphene Layers on Metal Foil: Effect of Point Defects
Here we report a facile method to generate a high density of point defects in
graphene on metal foil and show how the point defects affect the electronic
structures of graphene layers. Our scanning tunneling microscopy (STM)
measurements, complemented by first principle calculations, reveal that the
point defects result in both the intervalley and intravalley scattering of
graphene. The Fermi velocity is reduced in the vicinity area of the defect due
to the enhanced scattering. Additionally, our analysis further points out that
periodic point defects can tailor the electronic properties of graphene by
introducing a significant bandgap, which opens an avenue towards all-graphene
electronics.Comment: 4 figure
Strain Induced One-Dimensional Landau-Level Quantization in Corrugated Graphene
Theoretical research has predicted that ripples of graphene generates
effective gauge field on its low energy electronic structure and could lead to
zero-energy flat bands, which are the analog of Landau levels in real magnetic
fields. Here we demonstrate, using a combination of scanning tunneling
microscopy and tight-binding approximation, that the zero-energy Landau levels
with vanishing Fermi velocities will form when the effective pseudomagnetic
flux per ripple is larger than the flux quantum. Our analysis indicates that
the effective gauge field of the ripples results in zero-energy flat bands in
one direction but not in another. The Fermi velocities in the perpendicular
direction of the ripples are not renormalized at all. The condition to generate
the ripples is also discussed according to classical thin-film elasticity
theory.Comment: 4 figures, Phys. Rev.
Assessment of usefulness of synchrotron radiation techniques to determine arsenic species in hair and rice grain samples
The arseniasis in Southwest Guizhou, China has been identified as a unique case of endemic arseniasis caused by exposure to indoor combustion of high As-content coal. Present investigation targeted the microdistribution and speciation of the element arsenic in human hair and environmental samples collected in one of the hyperendemic villages of arseniasis in the area. Analyses were performed by micro-beam X-ray fluorescence (μ-XRF) and X-ray absorption fine structure (XAFS). The total As level in hair samples of diagnosed patients was detected at almost the same level as in their asymptomatic neighbors. Concentrations in the lateral cut of hair samples were high-low-high (from surface to center). XAFS revealed the coexistence of both the As+3 and As+5 states in hair samples. However, the samples from patients displayed a tendency of higher As+3 / As+5 ratio than the asymptomatic fellow villagers. The μ-XRF mapping of rice grains shows that arsenic penetrates the endosperm, the major edible part of the grain, when rice grains were stored over the open fire of high As-content coal. Synchrotron radiation techniques are suitable to determine arsenic species concentrations in different parts of hair and rice grain samples. As arsenic penetrates the endosperm, rinsing the rice grains with water will remain largely ineffective
Y Chromosomes of 40% Chinese Are Descendants of Three Neolithic Super-grandfathers
Demographic change of human populations is one of the central questions for
delving into the past of human beings. To identify major population expansions
related to male lineages, we sequenced 78 East Asian Y chromosomes at 3.9 Mbp
of the non-recombining region (NRY), discovered >4,000 new SNPs, and identified
many new clades. The relative divergence dates can be estimated much more
precisely using molecular clock. We found that all the Paleolithic divergences
were binary; however, three strong star-like Neolithic expansions at ~6 kya
(thousand years ago) (assuming a constant substitution rate of 1e-9/bp/year)
indicates that ~40% of modern Chinese are patrilineal descendants of only three
super-grandfathers at that time. This observation suggests that the main
patrilineal expansion in China occurred in the Neolithic Era and might be
related to the development of agriculture.Comment: 29 pages of article text including 1 article figure, 9 pages of SI
text, and 2 SI figures. 5 SI tables are in a separate ancillary fil
Transcatheter arterial chemoembolization combined with radiofrequency ablation delays tumor progression and prolongs overall survival in patients with intermediate (BCLC B) hepatocellular carcinoma
A Distributed Reconfigurable Control Law for Escorting and Patrolling Missions using Teams of Unicycles
- …
