335 research outputs found
Quantum optical coherence can survive photon losses: a continuous-variable quantum erasure correcting code
A fundamental requirement for enabling fault-tolerant quantum information
processing is an efficient quantum error-correcting code (QECC) that robustly
protects the involved fragile quantum states from their environment. Just as
classical error-correcting codes are indispensible in today's information
technologies, it is believed that QECC will play a similarly crucial role in
tomorrow's quantum information systems. Here, we report on the first
experimental demonstration of a quantum erasure-correcting code that overcomes
the devastating effect of photon losses. Whereas {\it errors} translate, in an
information theoretic language, the noise affecting a transmission line, {\it
erasures} correspond to the in-line probabilistic loss of photons. Our quantum
code protects a four-mode entangled mesoscopic state of light against erasures,
and its associated encoding and decoding operations only require linear optics
and Gaussian resources. Since in-line attenuation is generally the strongest
limitation to quantum communication, much more than noise, such an
erasure-correcting code provides a new tool for establishing quantum optical
coherence over longer distances. We investigate two approaches for
circumventing in-line losses using this code, and demonstrate that both
approaches exhibit transmission fidelities beyond what is possible by classical
means.Comment: 5 pages, 4 figure
Non-Gaussian states for continuous variable quantum computation via Gaussian maps
We investigate non-Gaussian states of light as ancillary inputs for
generating nonlinear transformations required for quantum computing with
continuous variables. We consider a recent proposal for preparing a cubic phase
state, find the exact form of the prepared state and perform a detailed
comparison to the ideal cubic phase state. We thereby identify the main
challenges to preparing an ideal cubic phase state and describe the gates
implemented with the non-ideal prepared state. We also find the general form of
operations that can be implemented with ancilla Fock states, together with
Gaussian input states, linear optics and squeezing transformations, and
homodyne detection with feed forward, and discuss the feasibility of continuous
variable quantum computing using ancilla Fock states.Comment: 8 pages, 6 figure
Continuous Variable Quantum Cryptography using Two-Way Quantum Communication
Quantum cryptography has been recently extended to continuous variable
systems, e.g., the bosonic modes of the electromagnetic field. In particular,
several cryptographic protocols have been proposed and experimentally
implemented using bosonic modes with Gaussian statistics. Such protocols have
shown the possibility of reaching very high secret-key rates, even in the
presence of strong losses in the quantum communication channel. Despite this
robustness to loss, their security can be affected by more general attacks
where extra Gaussian noise is introduced by the eavesdropper. In this general
scenario we show a "hardware solution" for enhancing the security thresholds of
these protocols. This is possible by extending them to a two-way quantum
communication where subsequent uses of the quantum channel are suitably
combined. In the resulting two-way schemes, one of the honest parties assists
the secret encoding of the other with the chance of a non-trivial superadditive
enhancement of the security thresholds. Such results enable the extension of
quantum cryptography to more complex quantum communications.Comment: 12 pages, 7 figures, REVTe
Two-step stabilization of orbital order and the dynamical frustration of spin in the model charge-transfer insulator KCuF3
We report a combined experimental and theoretical study of KCuF3, which
offers - because of this material's relatively simple lattice structure and
valence configuration (d9, i.e., one hole in the d-shell) - a particularly
clear view of the essential role of the orbital degree of freedom in governing
the dynamical coupling between the spin and lattice degrees of freedom. We
present Raman and x-ray scattering evidence that the phase behaviour of KCuF3
is dominated above the Neel temperature (T_N = 40 K) by coupled orbital/lattice
fluctuations that are likely associated with rotations of the CuF6 octahedra,
and we show that these orbital fluctuations are interrupted by a static
structural distortion that occurs just above T_N. A detailed model of the
orbital and magnetic phases of KCuF3 reveals that these orbital fluctuations -
and the related frustration of in-plane spin-order-are associated with the
presence of nearly degenerate low-energy spin-orbital states that are highly
susceptible to thermal fluctuations over a wide range of temperatures. A
striking implication of these results is that the ground state of KCuF3 at
ambient pressure lies near a quantum critical point associated with an
orbital/spin liquid phase that is obscured by emergent Neel ordering of the
spins; this exotic liquid phase might be accessible via pressure studies.Comment: 13 pages, 3 figure
On soft singularities at three loops and beyond
We report on further progress in understanding soft singularities of massless
gauge theory scattering amplitudes. Recently, a set of equations was derived
based on Sudakov factorization, constraining the soft anomalous dimension
matrix of multi-leg scattering amplitudes to any loop order, and relating it to
the cusp anomalous dimension. The minimal solution to these equations was shown
to be a sum over color dipoles. Here we explore potential contributions to the
soft anomalous dimension that go beyond the sum-over-dipoles formula. Such
contributions are constrained by factorization and invariance under rescaling
of parton momenta to be functions of conformally invariant cross ratios.
Therefore, they must correlate the color and kinematic degrees of freedom of at
least four hard partons, corresponding to gluon webs that connect four eikonal
lines, which first appear at three loops. We analyze potential contributions,
combining all available constraints, including Bose symmetry, the expected
degree of transcendentality, and the singularity structure in the limit where
two hard partons become collinear. We find that if the kinematic dependence is
solely through products of logarithms of cross ratios, then at three loops
there is a unique function that is consistent with all available constraints.
If polylogarithms are allowed to appear as well, then at least two additional
structures are consistent with the available constraints.Comment: v2: revised version published in JHEP (minor corrections in Sec. 4;
added discussion in Sec. 5.3; refs. added); v3: minor corrections (eqs. 5.11,
5.12 and 5.29); 38 pages, 3 figure
Study design and methods of the BoTULS trial: a randomised controlled trial to evaluate the clinical effect and cost effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A
Background
Following a stroke, 55–75% of patients experience upper limb problems in the longer term. Upper limb spasticity may cause pain, deformity and reduced function, affecting mood and independence. Botulinum toxin is used increasingly to treat focal spasticity, but its impact on upper limb function after stroke is unclear.
The aim of this study is to evaluate the clinical and cost effectiveness of botulinum toxin type A plus an upper limb therapy programme in the treatment of post stroke upper limb spasticity.
Methods
Trial design : A multi-centre open label parallel group randomised controlled trial and economic evaluation.
Participants : Adults with upper limb spasticity at the shoulder, elbow, wrist or hand and reduced upper limb function due to stroke more than 1 month previously.
Interventions : Botulinum toxin type A plus upper limb therapy (intervention group) or upper limb therapy alone (control group).
Outcomes : Outcome assessments are undertaken at 1, 3 and 12 months. The primary outcome is upper limb function one month after study entry measured by the Action Research Arm Test (ARAT). Secondary outcomes include: spasticity (Modified Ashworth Scale); grip strength; dexterity (Nine Hole Peg Test); disability (Barthel Activities of Daily Living Index); quality of life (Stroke Impact Scale, Euroqol EQ-5D) and attainment of patient-selected goals (Canadian Occupational Performance Measure). Health and social services resource use, adverse events, use of other antispasticity treatments and patient views on the treatment will be compared. Participants are clinically reassessed at 3, 6 and 9 months to determine the need for repeat botulinum toxin type A and/or therapy.
Randomisation : A web based central independent randomisation service.
Blinding : Outcome assessments are undertaken by an assessor who is blinded to the randomisation group.
Sample size : 332 participants provide 80% power to detect a 15% difference in treatment successes between intervention and control groups. Treatment success is defined as improvement of 3 points for those with a baseline ARAT of 0–3 and 6 points for those with ARAT of 4–56
MaxMin Linear Initialization for Fuzzy C-Means
International audienceClustering is an extensive research area in data science. The aim of clustering is to discover groups and to identify interesting patterns in datasets. Crisp (hard) clustering considers that each data point belongs to one and only one cluster. However, it is inadequate as some data points may belong to several clusters, as is the case in text categorization. Thus, we need more flexible clustering. Fuzzy clustering methods, where each data point can belong to several clusters, are an interesting alternative. Yet, seeding iterative fuzzy algorithms to achieve high quality clustering is an issue. In this paper, we propose a new linear and efficient initialization algorithm MaxMin Linear to deal with this problem. Then, we validate our theoretical results through extensive experiments on a variety of numerical real-world and artificial datasets. We also test several validity indices, including a new validity index that we propose, Transformed Standardized Fuzzy Difference (TSFD)
Orbit and bulk density of the OSIRIS-REx target Asteroid (101955) Bennu
The target asteroid of the OSIRIS-REx asteroid sample return mission, (101955) Bennu (formerly 1999 RQ36), is a half-kilometer near-Earth asteroid with an extraordinarily well constrained orbit. An extensive data set of optical astrometry from 1999 to 2013 and high-quality radar delay measurements to Bennu in 1999, 2005, and 2011 reveal the action of the Yarkovsky effect, with a mean semimajor axis drift rate da / dt = (- 19.0 ± 0.1) × 10 - 4 au/Myr or 284 ± 1.5 m/year. The accuracy of this result depends critically on the fidelity of the observational and dynamical model. As an example, neglecting the relativistic perturbations of the Earth during close approaches affects the orbit with 3σ significance in da / dt. The orbital deviations from purely gravitational dynamics allow us to deduce the acceleration of the Yarkovsky effect, while the known physical characterization of Bennu allows us to independently model the force due to thermal emissions. The combination of these two analyses yields a bulk density of ρ = 1260 ± 70 kg/m3, which indicates a macroporosity in the range 40 ± 10 % for the bulk densities of likely analog meteorites, suggesting a rubble-pile internal structure. The associated mass estimate is (7.8 ± 0.9) × 1010 kg and GM = 5.2 ± 0.6 m3 / s2.Bennu's Earth close approaches are deterministic over the interval 1654-2135, beyond which the predictions are statistical in nature. In particular, the 2135 close approach is likely within the lunar distance and leads to strong scattering and numerous potential impacts in subsequent years, from 2175 to 2196. The highest individual impact probability is 9.5 × 10 - 5 in 2196, and the cumulative impact probability is 3.7 × 10 - 4, leading to a cumulative Palermo Scale of -1.70. © 2014 Elsevier Inc
Interactions between cigarette and alcohol consumption in rural China
The objective of this paper is to analyze interdependencies between cigarette and alcohol consumption in rural China, using panel data for 10 years (1994–2003) for rural areas of 26 Chinese provinces. There have been many studies in which cigarette and alcohol consumption have been considered separately but few to date for China on interactions between the consumption of these two products. Taxes are often recommended as a tool to reduce alcohol and cigarette consumption. If cigarettes and alcohol are complements, taxing one will reduce the consumption of both and thus achieve a double public health dividend. However, if they are substitutes, taxing one will induce consumers to increase consumption of the other, offsetting the public health benefits of the tax. Our results indicate that the demands for both cigarettes and alcohol are very sensitive to the price of alcohol, but not to the price of cigarettes or to income. This suggests that taxes on alcohol can have a double dividend. On the other hand, an increase in cigarette taxes may not be effective in curbing cigarette or alcohol consumption in rural China
- …
