2,175 research outputs found

    Young red supergiants and the near infrared light appearance of disk galaxies

    Full text link
    Disk galaxies often show prominent nonaxisymmetric features at near-infrared wavelengths. Such features may indicate variations in the surface density of stellar mass, contributions from young red supergiants in star forming regions, or substantial dust obscuration. To distinguish among these possibilities, we have searched for spatial variations in the 2.3 micron photometric CO index within the disks of three nearby galaxies (NGC 278, NGC 2649, & NGC 5713). This index measures the strength of the absorption bands of molecular CO in stellar atmospheres, and is strong in cool, low surface-gravity stars, reaching the largest values for red supergiants. We observe significant spatial CO index variations in two galaxies (NGC 278 & NGC 5713), indicating that the dominant stellar population in the near-infrared is not everywhere the same. Central CO index peaks are present in two galaxies; these could be due to either metallicity gradients or recent star formation activity. In addition, significant azimuthal CO index variations are seen in NGC 278. Because strong azimuthal metallicity gradients are physically implausible in disk galaxies, these features are most naturally explained by the presence of a young stellar population. The fraction of 2 micron light due to young stellar populations in star forming regions can be calculated from our data. Overall, young stellar populations can contribute ~3% of a (normal) galaxy's near infrared flux. Locally, this fraction may rise to ~33%. Thus, young stars do not dominate the total near infrared flux, but can be locally dominant in star forming regions, and can bias estimates of spiral arm amplitude or other nonaxisymmetric structures in galaxies' mass distributions.Comment: 28 pages including 3 postscript figures. A fourth figure is in jpeg format. Uses AASTeX. Accepted for publication in The Astronomical Journa

    The Dusty Starburst Nucleus of M33

    Get PDF
    We have thoroughly characterized the ultraviolet to near-infrared (0.15 - 2.2 micron) spectral energy distribution (SED) of the central parsec of the M33 nucleus through new infrared photometry and optical/near-infrared spectroscopy, combined with ultraviolet/optical observations from the literature and the HST archive. The SED shows evidence for a significant level of attenuation, which we model through a Monte Carlo radiative transfer code as a shell of clumpy Milky Way-type dust (tau_V ~ 2 +/- 1). The discovery of Milky Way-type dust (with a strong 2175 A bump) internal to the M33 nucleus is different from previous work which has found SMC-like dust (no bump) near starburst regions. The amount by which dust can be processed may be related to the mass and age of the starburst as well as the extent to which the dust can shield itself. Our starburst models include the effects of this dust and can fit the SED if the nucleus was the site of a moderate (~10^8 L_sun at 10 Myrs) episode of coeval star formation about 70 Myrs ago. This result is quite different from previous studies which resorted to multiple stellar populations (between 2 and 7) attenuated by either no or very little internal dust. The M33 nuclear starburst is remarkably similar to an older version (70 Myr versus 10 Myr) of the ultra-compact starburst in the center of the Milky Way.Comment: 29 pages, 9 embedded figures, ApJ, in pres

    1-1.4 Micron Spectral Atlas of Stars

    Get PDF
    We present a catalog of J-band (1.08 um to 1.35 um) stellar spectra at low resolution (R ~ 400). The targets consist of 105 stars ranging in spectral type from O9.5 to M7 and luminosity classes I through V. The relatively featureless spectra of hot stars, earlier than A4, can be used to remove the atmospheric features which dominate ground-based J-band spectroscopy. We measure equivalent widths for three absorption lines and nine blended features which we identify in the spectra. Using detailed comparison with higher resolution spectra, we demonstrate that low resolution data can be used for stellar classification, since several features depend on the effective temperature and gravity. For example The CN index (1.096 - 1.104 um) decreases with temperature, but the strength of a blended feature at 1.28 um (consisting of primarily P beta) increases. The slope of a star's spectrum can also be used to estimate its effective temperature. The luminosity class of a star correlates with the ratio of the Mg I (1.1831 um) line to a blend of several species at 1.16 um. Using these indicators, a star can be classified to within several subclasses. Fifteen stars with particularly high and low metal abundances are included in the catalog and some spectral dependence on metal abundance is also found.Comment: 35 pages, 10 figures (3a-e are in gif format. For complete high resolution figures, go to http://www.astro.ucla.edu/~malkan/newjspec/) ; Accepted for published in ApJS; For associated spectra files, see http://www.astro.ucla.edu/~malkan/newjspec

    The Nature of Starburst Activity in M82

    Full text link
    We present new evolutionary synthesis models of M82 based mainly on observations consisting of near-infrared integral field spectroscopy and mid-infrared spectroscopy. The models incorporate stellar evolution, spectral synthesis, and photoionization modeling, and are optimized for 1-45 micron observations of starburst galaxies. The data allow us to model the starburst regions on scales as small as 25 pc. We investigate the initial mass function (IMF) of the stars and constrain quantitatively the spatial and temporal evolution of starburst activity in M82. We find a typical decay timescale for individual burst sites of a few million years. The data are consistent with the formation of very massive stars (> 50-100 Msun) and require a flattening of the starburst IMF below a few solar masses assuming a Salpeter slope at higher masses. Our results are well matched by a scenario in which the global starburst activity in M82 occurred in two successive episodes each lasting a few million years, peaking about 10 and 5 Myr ago. The first episode took place throughout the central regions of M82 and was particularly intense at the nucleus while the second episode occurred predominantly in a circumnuclear ring and along the stellar bar. We interpret this sequence as resulting from the gravitational interaction M82 and its neighbour M81, and subsequent bar-driven evolution. The short burst duration on all spatial scales indicates strong negative feedback effects of starburst activity, both locally and globally. Simple energetics considerations suggest the collective mechanical energy released by massive stars was able to rapidly inhibit star formation after the onset of each episode.Comment: 48 pages, incl. 16 Postscript figures; accepted for publication in the Astrophysical Journa

    A Medium-Resolution Near-Infrared Spectral Library of Late Type Stars: I

    Full text link
    We present an empirical infrared spectral library of medium resolution (R~2000-3000) H (1.6 micron) and K (2.2 micron) band spectra of 218 red stars, spanning a range of [Fe/H] from ~-2.2 to ~+0.3. The sample includes Galactic disk stars, bulge stars from Baade's window, and red giants from Galactic globular clusters. We report the values of 19 indices covering 12 spectral features measured from the spectra in the library. Finally, we derive calibrations to estimate the effective temperature, and diagnostic relationships to determine the luminosity classes of individual stars from near-infrared spectra. This paper is part of a larger effort aimed at building a near-IR spectral library to be incorporated in population synthesis models, as well as, at testing synthetic stellar spectra.Comment: 34 pages, 12 figures; accepted for publication at ApJS; the spectra are available from the authors upon reques

    The profile of a decaying crystalline cone

    Full text link
    The decay of a crystalline cone below the roughening transition is studied. We consider local mass transport through surface diffusion, focusing on the two cases of diffusion limited and attachment-detachment limited step kinetics. In both cases, we describe the decay kinetics in terms of step flow models. Numerical simulations of the models indicate that in the attachment-detachment limited case the system undergoes a step bunching instability if the repulsive interactions between steps are weak. Such an instability does not occur in the diffusion limited case. In stable cases the height profile, h(r,t), is flat at radii r<R(t)\sim t^{1/4}. Outside this flat region the height profile obeys the scaling scenario \partial h/\partial r = {\cal F}(r t^{-1/4}). A scaling ansatz for the time-dependent profile of the cone yields analytical values for the scaling exponents and a differential equation for the scaling function. In the long time limit this equation provides an exact description of the discrete step dynamics. It admits a family of solutions and the mechanism responsible for the selection of a unique scaling function is discussed in detail. Finally we generalize the model and consider permeable steps by allowing direct adatom hops between neighboring terraces. We argue that step permeability does not change the scaling behavior of the system, and its only effect is a renormalization of some of the parameters.Comment: 25 pages, 18 postscript figure

    A 180 Kpc Tidal Tail in the Luminous Infrared Merger Arp 299

    Get PDF
    We present VLA HI observations and UH88 deep optical B- and R-band observations of the IR luminous merger Arp 299 (= NGC 3690 + IC 694). These data reveal a gas-rich, optically faint tidal tail with a length of over 180 kpc. The size of this tidal feature necessitates an old interaction age for the merger (~750 Myr since first periapse), which is currently experiencing a very young star burst (~20 Myr). The observations reveal a most remarkable structure within the tidal tail: it appears to be composed of two parallel filaments separated by ~20 kpc. One of the filaments is gas rich with little if any starlight, while the other is gas poor. We believe that this bifurcation results from a warped disk in one of the progenitors. The quantities and kinematics of the tidal HI suggest that Arp 299 results from the collision of a retrograde Sab-Sb galaxy (IC 694) and a prograde Sbc-Sc galaxy (NGC 3690) that occurred 750 Myr ago and which will merge into a single object in ~60 Myr. We suggest that the present IR luminous phase in this system is due in part to the retrograde spin of IC 694. Finally, we discuss the apparent lack of tidal dwarf galaxies within the tail.Comment: LaTex, 14 pages, 11 figures, 4 tables, uses emulateapj.sty. Accepted to AJ for July 1999. For version with full-resolution images see http://www.cv.nrao.edu/~jhibbard/a299/HIpaper/a299HI.htm

    Profile scaling in decay of nanostructures

    Full text link
    The flattening of a crystal cone below its roughening transition is studied by means of a step flow model. Numerical and analytical analyses show that the height profile, h(r,t), obeys the scaling scenario dh/dr = F(r t^{-1/4}). The scaling function is flat at radii r<R(t) \sim t^{1/4}. We find a one parameter family of solutions for the scaling function, and propose a selection criterion for the unique solution the system reaches.Comment: 4 pages, RevTex, 3 eps figure

    Near-Infrared Classification Spectroscopy: H-band Spectra of Fundamental MK Standards

    Get PDF
    We present a catalogue of H-band spectra for 85 stars of approximately solar abundance observed at a resolving power of 3000 with the KPNO Mayall 4m FTS. The atlas covers spectral types O7-M5 and luminosity classes I-V as defined on the MK system. We identify both atomic and molecular indices and line-ratios which are temperature and luminosity sensitive allowing spectral classification to be carried out in the H-band. The line ratios permit spectral classification in the presence of continuum excess emission, which is commonly found in pre-main sequence and evolved stars. We demonstrate that with spectra of R = 1000 obtained at SNR > 50 it is possible to derive spectral types within +- 2 subclasses for late-type stars. These data are available electronically through the Astronomical Data Center in addition to being served on the World-Wide-Web.Comment: To appear in the November 20, 1998 issue of ApJ (Volume 508, #1
    corecore