349 research outputs found

    Stress correlations in glasses

    Full text link
    We rigorously establish that, in disordered three-dimensional (3D) isotropic solids, the stress autocorrelation function presents anisotropic terms that decay as 1/r31/r^3 at long-range, with rr the distance, as soon as either pressure or shear stress fluctuations are normal. By normal, we mean that the fluctuations of stress, as averaged over spherical domains, decay as the inverse domain volume. Since this property is required for macroscopic stress to be self-averaging, it is expected to hold generically in all glasses and we thus conclude that the presence of 1/r31/r^3 stress correlation tails is the rule in these systems. Our proof follows from the observation that, in an infinite medium, when both material isotropy and mechanical balance hold, (i) the stress autocorrelation matrix is completely fixed by just two radial functions: the pressure autocorrelation and the trace of the autocorrelation of stress deviators; furthermore, these two functions (ii) fix the decay of the fluctuations of sphere-averaged pressure and deviatoric stresses for windows of increasing volume. Our conclusion is reached because, due to the precise analytic relation (i) fixed by isotropy and mechanical balance, the constraints arising via (ii) from the normality of stress fluctuations demand the spatially anisotropic stress correlation terms to decay as 1/r31/r^3 at long-range. For the sake of generality, we also examine situations when stress fluctuations are not normal

    Equilibrium measures for uniformly quasiregular dynamics

    Full text link
    We establish the existence and fundamental properties of the equilibrium measure in uniformly quasiregular dynamics. We show that a uniformly quasiregular endomorphism ff of degree at least 2 on a closed Riemannian manifold admits an equilibrium measure μf\mu_f, which is balanced and invariant under ff and non-atomic, and whose support agrees with the Julia set of ff. Furthermore we show that ff is strongly mixing with respect to the measure μf\mu_f. We also characterize the measure μf\mu_f using an approximation property by iterated pullbacks of points under ff up to a set of exceptional initial points of Hausdorff dimension at most n1n-1. These dynamical mixing and approximation results are reminiscent of the Mattila-Rickman equidistribution theorem for quasiregular mappings. Our methods are based on the existence of an invariant measurable conformal structure due to Iwaniec and Martin and the \cA-harmonic potential theory.Comment: 17 page

    Explicit Barenblatt Profiles for Fractional Porous Medium Equations

    Full text link
    Several one-parameter families of explicit self-similar solutions are constructed for the porous medium equations with fractional operators. The corresponding self-similar profiles, also called \emph{Barenblatt profiles}, have the same forms as those of the classic porous medium equations. These new exact solutions complement current theoretical analysis of the underlying equations and are expected to provide insights for further quantitative investigations

    Schramm-Loewner Equations Driven by Symmetric Stable Processes

    Full text link
    We consider shape, size and regularity of the hulls of the chordal Schramm-Loewner evolution driven by a symmetric alpha-stable process. We obtain derivative estimates, show that the complements of the hulls are Hoelder domains, prove that the hulls have Hausdorff dimension 1, and show that the trace is right-continuous with left limits almost surely.Comment: 22 pages, 4 figure

    A Fascinating Polynomial Sequence arising from an Electrostatics Problem on the Sphere

    Full text link
    A positive unit point charge approaching from infinity a perfectly spherical isolated conductor carrying a total charge of +1 will eventually cause a negatively charged spherical cap to appear. The determination of the smallest distance ρ(d)\rho(d) (dd is the dimension of the unit sphere) from the point charge to the sphere where still all of the sphere is positively charged is known as Gonchar's problem. Using classical potential theory for the harmonic case, we show that 1+ρ(d)1+\rho(d) is equal to the largest positive zero of a certain sequence of monic polynomials of degree 2d12d-1 with integer coefficients which we call Gonchar polynomials. Rather surprisingly, ρ(2)\rho(2) is the Golden ratio and ρ(4)\rho(4) the lesser known Plastic number. But Gonchar polynomials have other interesting properties. We discuss their factorizations, investigate their zeros and present some challenging conjectures.Comment: 12 pages, 6 figures, 1 tabl

    All functions are (locally) ss-harmonic (up to a small error) - and applications

    Full text link
    The classical and the fractional Laplacians exhibit a number of similarities, but also some rather striking, and sometimes surprising, structural differences. A quite important example of these differences is that any function (regardless of its shape) can be locally approximated by functions with locally vanishing fractional Laplacian, as it was recently proved by Serena Dipierro, Ovidiu Savin and myself. This informal note is an exposition of this result and of some of its consequences

    On equilibrium shapes of charged flat drops

    Full text link
    Equilibrium shapes of two-dimensional charged, perfectly conducting liquid drops are governed by a geometric variational problem that involves a perimeter term modeling line tension and a capacitary term modeling Coulombic repulsion. Here we give a complete explicit solution to this variational problem. Namely, we show that at fixed total charge a ball of a particular radius is the unique global minimizer among all sufficiently regular sets in the plane. For sets whose area is also fixed, we show that balls are the only minimizers if the charge is less than or equal to a critical charge, while for larger charge minimizers do not exist. Analogous results hold for drops whose potential, rather than charge, is fixed

    \epsilon-regularity for systems involving non-local, antisymmetric operators

    Full text link
    We prove an epsilon-regularity theorem for critical and super-critical systems with a non-local antisymmetric operator on the right-hand side. These systems contain as special cases, Euler-Lagrange equations of conformally invariant variational functionals as Rivi\`ere treated them, and also Euler-Lagrange equations of fractional harmonic maps introduced by Da Lio-Rivi\`ere. In particular, the arguments presented here give new and uniform proofs of the regularity results by Rivi\`ere, Rivi\`ere-Struwe, Da-Lio-Rivi\`ere, and also the integrability results by Sharp-Topping and Sharp, not discriminating between the classical local, and the non-local situations

    Bulk Universality and Related Properties of Hermitian Matrix Models

    Full text link
    We give a new proof of universality properties in the bulk of spectrum of the hermitian matrix models, assuming that the potential that determines the model is globally C2C^{2} and locally C3C^{3} function (see Theorem \ref{t:U.t1}). The proof as our previous proof in \cite{Pa-Sh:97} is based on the orthogonal polynomial techniques but does not use asymptotics of orthogonal polynomials. Rather, we obtain the sinsin-kernel as a unique solution of a certain non-linear integro-differential equation that follows from the determinant formulas for the correlation functions of the model. We also give a simplified and strengthened version of paper \cite{BPS:95} on the existence and properties of the limiting Normalized Counting Measure of eigenvalues. We use these results in the proof of universality and we believe that they are of independent interest

    The discontinuous Galerkin method for fractional degenerate convection-diffusion equations

    Full text link
    We propose and study discontinuous Galerkin methods for strongly degenerate convection-diffusion equations perturbed by a fractional diffusion (L\'evy) operator. We prove various stability estimates along with convergence results toward properly defined (entropy) solutions of linear and nonlinear equations. Finally, the qualitative behavior of solutions of such equations are illustrated through numerical experiments
    corecore