1,018 research outputs found
On classical string configurations
Equations which define classical configurations of strings in are
presented in a simple form. General properties as well as particular classes of
solutions of these equations are considered.Comment: 10 pages, Latex, no figures, trivial corrections, submitted to Modern
Physics Letters
Quantum effects for extrinsic geometry of strings via the generalized Weierstrass representation
The generalized Weierstrass representation for surfaces in is
used to study quantum effects for strings governed by Polyakov-Nambu-Goto
action. Correlators of primary fields are calculated exactly in one-loop
approximation for the pure extrinsic Polyakov action. Geometrical meaning of
infrared singularity is discussed. The Nambu-Goto and spontaneous curvature
actions are treated perturbatively.Comment: Latex, 13 page
Time-Dependent Behavior of Linear Polarization in Unresolved Photospheres, With Applications for The Hanle Effect
Aims: This paper extends previous studies in modeling time varying linear
polarization due to axisymmetric magnetic fields in rotating stars. We use the
Hanle effect to predict variations in net line polarization, and use geometric
arguments to generalize these results to linear polarization due to other
mechanisms. Methods: Building on the work of Lopez Ariste et al., we use simple
analytic models of rotating stars that are symmetric except for an axisymmetric
magnetic field to predict the polarization lightcurve due to the Hanle effect.
We highlight the effects for the variable line polarization as a function of
viewing inclination and field axis obliquity. Finally, we use geometric
arguments to generalize our results to linear polarization from the weak
transverse Zeeman effect. Results: We derive analytic expressions to
demonstrate that the variable polarization lightcurve for an oblique magnetic
rotator is symmetric. This holds for any axisymmetric field distribution and
arbitrary viewing inclination to the rotation axis. Conclusions: For the
situation under consideration, the amplitude of the polarization variation is
set by the Hanle effect, but the shape of the variation in polarization with
phase depends largely on geometrical projection effects. Our work generalizes
the applicability of results described in Lopez Ariste et al., inasmuch as the
assumptions of a spherical star and an axisymmetric field are true, and
provides a strategy for separating the effects of perspective from the Hanle
effect itself for interpreting polarimetric lightcurves.Comment: 6 pages; 4 figures. Includes an extra figure found only in this
preprint versio
Unified Treatment of Heterodyne Detection: the Shapiro-Wagner and Caves Frameworks
A comparative study is performed on two heterodyne systems of photon
detectors expressed in terms of a signal annihilation operator and an image
band creation operator called Shapiro-Wagner and Caves' frame, respectively.
This approach is based on the introduction of a convenient operator
which allows a unified formulation of both cases. For the Shapiro-Wagner
scheme, where , quantum phase and amplitude
are exactly defined in the context of relative number state (RNS)
representation, while a procedure is devised to handle suitably and in a
consistent way Caves' framework, characterized by , within the approximate simultaneous measurements of
noncommuting variables. In such a case RNS phase and amplitude make sense only
approximately.Comment: 25 pages. Just very minor editorial cosmetic change
Novel approach to the study of quantum effects in the early universe
We develop a theoretical frame for the study of classical and quantum
gravitational waves based on the properties of a nonlinear ordinary
differential equation for a function of the conformal time
, called the auxiliary field equation. At the classical level,
can be expressed by means of two independent solutions of the
''master equation'' to which the perturbed Einstein equations for the
gravitational waves can be reduced. At the quantum level, all the significant
physical quantities can be formulated using Bogolubov transformations and the
operator quadratic Hamiltonian corresponding to the classical version of a
damped parametrically excited oscillator where the varying mass is replaced by
the square cosmological scale factor . A quantum approach to the
generation of gravitational waves is proposed on the grounds of the previous
dependent Hamiltonian. An estimate in terms of and
of the destruction of quantum coherence due to the gravitational
evolution and an exact expression for the phase of a gravitational wave
corresponding to any value of are also obtained. We conclude by
discussing a few applications to quasi-de Sitter and standard de Sitter
scenarios.Comment: 20 pages, to appear on PRD. Already published background material has
been either settled up in a more compact form or eliminate
Extended thromboprophylaxis with betrixaban in acutely ill medical patients
BACKGROUND:
Patients with acute medical illnesses are at prolonged risk for venous thrombosis. However, the appropriate duration of thromboprophylaxis remains unknown.
METHODS:
Patients who were hospitalized for acute medical illnesses were randomly assigned to receive subcutaneous enoxaparin (at a dose of 40 mg once daily) for 10±4 days plus oral betrixaban placebo for 35 to 42 days or subcutaneous enoxaparin placebo for 10±4 days plus oral betrixaban (at a dose of 80 mg once daily) for 35 to 42 days. We performed sequential analyses in three prespecified, progressively inclusive cohorts: patients with an elevated d-dimer level (cohort 1), patients with an elevated d-dimer level or an age of at least 75 years (cohort 2), and all the enrolled patients (overall population cohort). The statistical analysis plan specified that if the between-group difference in any analysis in this sequence was not significant, the other analyses would be considered exploratory. The primary efficacy outcome was a composite of asymptomatic proximal deep-vein thrombosis and symptomatic venous thromboembolism. The principal safety outcome was major bleeding.
RESULTS:
A total of 7513 patients underwent randomization. In cohort 1, the primary efficacy outcome occurred in 6.9% of patients receiving betrixaban and 8.5% receiving enoxaparin (relative risk in the betrixaban group, 0.81; 95% confidence interval [CI], 0.65 to 1.00; P=0.054). The rates were 5.6% and 7.1%, respectively (relative risk, 0.80; 95% CI, 0.66 to 0.98; P=0.03) in cohort 2 and 5.3% and 7.0% (relative risk, 0.76; 95% CI, 0.63 to 0.92; P=0.006) in the overall population. (The last two analyses were considered to be exploratory owing to the result in cohort 1.) In the overall population, major bleeding occurred in 0.7% of the betrixaban group and 0.6% of the enoxaparin group (relative risk, 1.19; 95% CI, 0.67 to 2.12; P=0.55).
CONCLUSIONS:
Among acutely ill medical patients with an elevated d-dimer level, there was no significant difference between extended-duration betrixaban and a standard regimen of enoxaparin in the prespecified primary efficacy outcome. However, prespecified exploratory analyses provided evidence suggesting a benefit for betrixaban in the two larger cohorts. (Funded by Portola Pharmaceuticals; APEX ClinicalTrials.gov number, NCT01583218.)
Generalized time-dependent oscillators:results from a group-theoretical approach and their application to cosmology
Some results following from the analysis of generalized time-dependent oscillators in the framework of the Lie group theory are reviewed. Their role in treating aspects concerning the loss of coherence in cosmological models is discussed
- …
