924 research outputs found
Randomized multicentre pilot study of sacubitril/valsartan versus irbesartan in patients with chronic kidney disease: United Kingdom Heart and Renal Protection (HARP)- III—rationale, trial design and baseline data
BACKGROUND:
Patients with chronic kidney disease (CKD) are at risk of progression to end-stage renal disease and cardiovascular disease. Data from other populations and animal experiments suggest that neprilysin inhibition (which augments the natriuretic peptide system) may reduce these risks, but clinical trials among patients with CKD are required to test this hypothesis.
METHODS:
UK Heart and Renal Protection III (HARP-III) is a multicentre, double-blind, randomized controlled trial comparing sacubitril/valsartan 97/103 mg two times daily (an angiotensin receptor-neprilysin inhibitor) with irbesartan 300 mg one time daily among 414 patients with CKD. Patients ≥18 years of age with an estimated glomerular filtration rate (eGFR) of ≥45 but <60 mL/min/1.73 m2 and urine albumin:creatinine ratio (uACR) >20 mg/mmol or eGFR ≥20 but <45 mL/min/1.73 m2 (regardless of uACR) were invited to be screened. Following a 4- to 7-week pre-randomization single-blind placebo run-in phase (during which any current renin-angiotensin system inhibitors were stopped), willing and eligible participants were randomly assigned either sacubitril/valsartan or irbesartan and followed-up for 12 months. The primary aim was to compare the effects of sacubitril/valsartan and irbesartan on measured GFR after 12 months of therapy. Important secondary outcomes include effects on albuminuria, change in eGFR over time and the safety and tolerability of sacubitril/valsartan in CKD.
RESULTS:
Between November 2014 and January 2016, 620 patients attended a screening visit and 566 (91%) entered the pre-randomization run-in phase. Of these, 414 (73%) participants were randomized (mean age 63 years; 72% male). The mean eGFR was 34.0 mL/min/1.73 m2 and the median uACR was 58.5 mg/mmol.
CONCLUSIONS:
UK HARP-III will provide important information on the short-term effects of sacubitril/valsartan on renal function, tolerability and safety among patients with CKD
Effect of a reduction in glomerular filtration rate after nephrectomy on arterial stiffness and central hemodynamics: rationale and design of the EARNEST study
Background: There is strong evidence of an association between chronic kidney disease (CKD) and cardiovascular disease. To date, however, proof that a reduction in glomerular filtration rate (GFR) is a causative factor in cardiovascular disease is lacking. Kidney donors comprise a highly screened population without risk factors such as diabetes and inflammation, which invariably confound the association between CKD and cardiovascular disease. There is strong evidence that increased arterial stiffness and left ventricular hypertrophy and fibrosis, rather than atherosclerotic disease, mediate the adverse cardiovascular effects of CKD. The expanding practice of live kidney donation provides a unique opportunity to study the cardiovascular effects of an isolated reduction in GFR in a prospective fashion. At the same time, the proposed study will address ongoing safety concerns that persist because most longitudinal outcome studies have been undertaken at single centers and compared donor cohorts with an inappropriately selected control group.<p></p>
Hypotheses: The reduction in GFR accompanying uninephrectomy causes (1) a pressure-independent increase in aortic stiffness (aortic pulse wave velocity) and (2) an increase in peripheral and central blood pressure.<p></p>
Methods: This is a prospective, multicenter, longitudinal, parallel group study of 440 living kidney donors and 440 healthy controls. All controls will be eligible for living kidney donation using current UK transplant criteria. Investigations will be performed at baseline and repeated at 12 months in the first instance. These include measurement of arterial stiffness using applanation tonometry to determine pulse wave velocity and pulse wave analysis, office blood pressure, 24-hour ambulatory blood pressure monitoring, and a series of biomarkers for cardiovascular and bone mineral disease.<p></p>
Conclusions: These data will prove valuable by characterizing the direction of causality between cardiovascular and renal disease. This should help inform whether targeting reduced GFR alongside more traditional cardiovascular risk factors is warranted. In addition, this study will contribute important safety data on living kidney donors by providing a longitudinal assessment of well-validated surrogate markers of cardiovascular disease, namely, blood pressure and arterial stiffness. If any adverse effects are detected, these may be potentially reversed with the early introduction of targeted therapy. This should ensure that kidney donors do not come to long-term harm and thereby preserve the ongoing expansion of the living donor transplant program.<p></p>
In practice: RECOVERY Trial
The Randomised Evaluation of coronavirus disease 2019 (COVID-19) Therapy Trial (RECOVERY) has been the largest COVID-19 treatment study conducted. It provided compelling evidence on the safety and efficacy, or lack thereof, of a multitude of therapies postulated to be of benefit to COVID-19 patients. This chapter describes the background and environment that led to the protocol design, the key characteristics of the protocol, the operational elements facilitating speedy execution of the study, and the impact and subsequent international expansion of the study
Randomized multicentre pilot study of sacubitril/valsartan versus irbesartan in patients with chronic kidney disease: United Kingdom Heart and Renal Protection (HARP)- III-rationale, trial design and baseline data
Background
Patients with chronic kidney disease (CKD) are at risk of progression to end-stage renal disease and cardiovascular disease. Data from other populations and animal experiments suggest that neprilysin inhibition (which augments the natriuretic peptide system) may reduce these risks, but clinical trials among patients with CKD are required to test this hypothesis.
Methods
UK Heart and Renal Protection III (HARP-III) is a multicentre, double-blind, randomized controlled trial comparing sacubitril/valsartan 97/103 mg two times daily (an angiotensin receptor–neprilysin inhibitor) with irbesartan 300 mg one time daily among 414 patients with CKD. Patients ≥18 years of age with an estimated glomerular filtration rate (eGFR) of ≥45 but 20 mg/mmol or eGFR ≥20 but <45 mL/min/1.73 m2 (regardless of uACR) were invited to be screened. Following a 4- to 7-week pre-randomization single-blind placebo run-in phase (during which any current renin–angiotensin system inhibitors were stopped), willing and eligible participants were randomly assigned either sacubitril/valsartan or irbesartan and followed-up for 12 months. The primary aim was to compare the effects of sacubitril/valsartan and irbesartan on measured GFR after 12 months of therapy. Important secondary outcomes include effects on albuminuria, change in eGFR over time and the safety and tolerability of sacubitril/valsartan in CKD.
Results
Between November 2014 and January 2016, 620 patients attended a screening visit and 566 (91%) entered the pre-randomization run-in phase. Of these, 414 (73%) participants were randomized (mean age 63 years; 72% male). The mean eGFR was 34.0 mL/min/1.73 m2 and the median uACR was 58.5 mg/mmol.
Conclusions
UK HARP-III will provide important information on the short-term effects of sacubitril/valsartan on renal function, tolerability and safety among patients with CKD
Central statistical monitoring in multicentre clinical trials: developing statistical approaches for analysing key risk indicators
A key risk indicator approach to central statistical monitoring in multicentre clinical trials: method development in the context of an ongoing large-scale randomized trial
Use of NHS Digital datasets as trial data in the UK: a position paper
Background: Clinical trial teams increasingly want to make use of data from healthcare systems (“healthcare data”), particularly to enhance recruitment and follow-up of participants, to reduce time and cost, and to stop the duplication of effort. However, there is continued uncertainty of how regulators regard healthcare data used for trial purposes, in terms of provenance, quality and reliability.
Objectives: There were two key objectives: First, to demonstrate the data integrity of two datasets held by NHS Digital (NHSD) that are most requested by trial teams; and second, to set out an approach by which any other healthcare systems datasets can be similarly evaluated.
Method: The data lifecycles of the datasets were carefully documented, mapping the flow of data from the originating healthcare provider’s databases to NHSD warehouses and onwards to clinical trials teams. These were assessed for evidence of whether the datasets are accurate, reliable, complete, contemporaneous, and well-governed.
Result: The assessment method was applied to (a) the Hospital Episode Statistics Admitted Patient Care (HES APC) dataset and (b) the Civil Registration of Deaths (CRD) dataset. This paper clearly demonstrates that their collection and management through NHSD systems ensure their integrity and reliability. The datasets are accurate representations of the data held by the originating providers (acute NHS trusts and local registrars).
Conclusion: Based on these findings, the HES APC and CRD datasets satisfy the assessment criteria that demonstrate they are reliable transcribed copies of the original source data.
Implications: First, these datasets can be used directly for clinical trial data, with trial teams focusing on the accuracy of algorithms and processes to identify particular outcomes rather than on the integrity of the data flow. Second, this assessment approach should be used to assess whether other healthcare systems datasets are ready to be used as transcribed copies of source data, and for data providers to take appropriate steps to redress this matter if they are not
Serious adverse effects of extended-release niacin/laropiprant: results from the Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events (HPS2-THRIVE) Trial
Purpose
The Heart Protection Study 2–Treatment of HDL to Reduce the Incidence of Vascular Events (HPS2-THRIVE) trial of patients at high risk of vascular disease found that adding extended-release niacin-laropiprant to intensive statin-based LDL-lowering therapy had no benefit on cardiovascular outcomes. However, the trial also identified previously unrecognized serious adverse effects (including new-onset diabetes, bleeding, and infection). Our objective was to explore the safety profile of niacin-laropiprant and examine whether any patients were at lower (or higher) risk of its adverse effects.
Methods
HPS2-THRIVE was a randomized, double-blind trial of niacin-laropiprant (2000/40 mg/d) versus placebo among 25,673 patients at high risk of vascular disease. Information on all serious adverse events was collected during a median of 3.9 years of study treatment. Effects of niacin-laropiprant on new-onset diabetes, disturbances of diabetes control, bleeding, infection, and gastrointestinal upset were estimated by (1) time after randomization, (2) severity, (3) baseline characteristics, (4) baseline risk of the adverse event of interest, and (5) risk of major vascular event.
Findings
The hazard ratio (HR) for new-onset diabetes with niacin/laropiprant was 1.32 (95% CI, 1.16–1.51; P < .001), which corresponded to an absolute excess of 4 people (95% CI, 2–6) developing diabetes per 1000 person-years in the study population as a whole. Among the 8299 participants with diabetes at baseline, the HR for serious disturbances in diabetes control was 1.56 (95% CI, 1.35–1.80), corresponding to an absolute excess of 12 (95% CI, 8–16) per 1000 person-years. The HR was 1.38 (95% CI, 1.17–1.63; P < .001) for serious bleeding, corresponding to an absolute excess of 2 (95% CI, 1–3) per 1000 person-years and 1.22 (95% CI, 1.11–1.34; P < .001) for serious infection, corresponding to an absolute excess of 4 (95% CI, 2–6) per 1000 person-years. The excess risks of these serious adverse events were larger in the first year after starting niacin-laropiprant therapy than in later years (except for the excess of infection, which did not appear to attenuate with time), and the risks of nonfatal and fatal events were similarly increased. The absolute excesses of each of these adverse effects were similar regardless of the baseline risk of the outcome.
Implications
Practitioners or patients considering the use of niacin (in addition to, or instead of, a statin) despite the lack of evidence of cardiovascular benefits (at least when added to effective statin therapy) should take account of the significant risks of these serious adverse effects when making such decisions. ClinicalTrials.gov identifier: NCT00461630
Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial
Conventional and Genetic Evidence on the Association between Adiposity and CKD
Background The size of any causal contribution of central and general adiposity to CKD risk and the underlying mechanism of mediation are unknown.
Methods Data from 281,228 UK Biobank participants were used to estimate the relevance of waist-to-hip ratio and body mass index (BMI) to CKD prevalence. Conventional approaches used logistic regression. Genetic analyses used Mendelian randomization (MR) and data from 394 waist-to-hip ratio and 773 BMI-associated loci. Models assessed the role of known mediators (diabetes mellitus and BP) by adjusting for measured values (conventional analyses) or genetic associations of the selected loci (multivariable MR).
Results Evidence of CKD was found in 18,034 (6.4%) participants. Each 0.06 higher measured waist-to-hip ratio and each 5-kg/m2 increase in BMI were associated with 69% (odds ratio, 1.69; 95% CI, 1.64 to 1.74) and 58% (1.58; 1.55 to 1.62) higher odds of CKD, respectively. In analogous MR analyses, each 0.06–genetically-predicted higher waist-to-hip ratio was associated with a 29% (1.29; 1.20 to 1.38) increased odds of CKD, and each 5-kg/m2 genetically-predicted higher BMI was associated with a 49% (1.49; 1.39 to 1.59) increased odds. After adjusting for diabetes and measured BP, chi-squared values for associations for waist-to-hip ratio and BMI fell by 56%. In contrast, mediator adjustment using multivariable MR found 83% and 69% reductions in chi-squared values for genetically-predicted waist-to-hip ratio and BMI models, respectively.
Conclusions Genetic analyses suggest that conventional associations between central and general adiposity with CKD are largely causal. However, conventional approaches underestimate mediating roles of diabetes, BP, and their correlates. Genetic approaches suggest these mediators explain most of adiposity-CKD–associated risk.</p
- …
