3,462 research outputs found
Rival male chemical cues evoke changes in male pre- and post-copulatory investment in a flour beetle.
This is the final version of the article. Available from Oxford University Press via the DOI in this record.Males can gather information on the risk and intensity of sperm competition from their social environment. Recent studies have implicated chemosensory cues, for instance cuticular hydrocarbons (CHCs) in insects, as a key source of this information. Here, using the broad-horned flour beetle (Gnatocerus cornutus), we investigated the importance of contact-derived rival male CHCs in informing male perception of sperm competition risk and intensity. We experimentally perfumed virgin females with male CHCs via direct intersexual contact and measured male pre- and post-copulatory investment in response to this manipulation. Using chemical analysis, we verified that this treatment engendered changes to perfumed female CHC profiles, but did not make perfumed females "smell" mated. Despite this, males responded to these chemical changes. Males increased courtship effort under low levels of perceived competition (from 1-3 rivals), but significantly decreased courtship effort as perceived competition rose (from 3-5 rivals). Furthermore, our measurement of ejaculate investment showed that males allocated significantly more sperm to perfumed females than to control females. Together, these results suggest that changes in female chemical profile elicited by contact with rival males do not provide males with information on female mating status, but rather inform males of the presence of rivals within the population and thus provide a means for males to indirectly assess the risk of sperm competition.S.M.L. was funded by a Natural Environment Research Council
(NERC) studentship, J.H.S. was funded by NERC, a Royal Society
Fellowship, and a Royal Society Equipment Grant (UF120087), and
C.M.H. by a Leverhulme Early Career Fellowship (ECF/2010/0067)
Randomized phase I trial HIV-CORE 003: Depletion of serum amyloid P component and immunogenicity of DNA vaccination against HIV-1
BACKGROUND: The failure of DNA vaccination in humans, in contrast to its efficacy in some species, is unexplained. Observational and interventional experimental evidence suggests that DNA immunogenicity may be prevented by binding of human serum amyloid P component (SAP). SAP is the single normal DNA binding protein in human plasma. The drug (R)-1-[6-[(R)-2-carboxypyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, miridesap), developed for treatment of systemic amyloidosis and Alzheimer’s disease, depletes circulating SAP by 95–99%. The proof-of-concept HIV-CORE 003 clinical trial tested whether SAP depletion by CPHPC would enhance the immune response in human volunteers to DNA vaccination delivering the HIVconsv immunogen derived from conserved sub-protein regions of HIV-1. METHODS: Human volunteers received 3 intramuscular immunizations with an experimental DNA vaccine (DDD) expressing HIV-1-derived immunogen HIVconsv, with or without prior depletion of SAP by CPHPC. All subjects were subsequently boosted by simian (chimpanzee) adenovirus (C)- and poxvirus MVA (M)-vectored vaccines delivering the same immunogen. After administration of each vaccine modality, the peak total magnitudes, kinetics, functionality and memory subsets of the T-cell responses to HIVconsv were thoroughly characterized. RESULTS: No differences were observed between the CPHPC treated and control groups in any of the multiple quantitative and qualitative parameters of the T-cell responses to HIVconsv, except that after SAP depletion, there was a statistically significantly greater breadth of T-cell specificities, that is the number of recognized epitopes, following the DDDC vaccination. CONCLUSIONS: The protocol used here for SAP depletion by CPHPC prior to DNA vaccination produced only a very modest suggestion of enhanced immunogenicity. Further studies will be required to determine whether SAP depletion might have a practical value in DNA vaccination for other plasmid backbones and/or immunogens. TRIAL REGISTRATION: Clinicaltrials.gov NCT02425241
Vectorlike Confinement at the LHC
We argue for the plausibility of a broad class of vectorlike confining gauge
theories at the TeV scale which interact with the Standard Model predominantly
via gauge interactions. These theories have a rich phenomenology at the LHC if
confinement occurs at the TeV scale, while ensuring negligible impact on
precision electroweak and flavor observables. Spin-1 bound states can be
resonantly produced via their mixing with Standard Model gauge bosons. The
resonances promptly decay to pseudo-Goldstone bosons, some of which promptly
decay to a pair of Standard Model gauge bosons, while others are charged and
stable on collider time scales. The diverse set of final states with little
background include multiple photons and leptons, missing energy, massive stable
charged particles and the possibility of highly displaced vertices in dilepton,
leptoquark or diquark decays. Among others, a novel experimental signature of
resonance reconstruction out of massive stable charged particles is
highlighted. Some of the long-lived states also constitute Dark Matter
candidates.Comment: 33 pages, 6 figures. v4: expanded discussion of Z_2 symmetry for
stability, one reference adde
Australian Sphingidae – DNA Barcodes Challenge Current Species Boundaries and Distributions
© 2014 Rougerie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
Exchange Rates and Trade Balance Adjustment: A Multi-Country Empirical Analysis
This study assesses the response of the trade balance to exchange rate fluctuations across a large number of countries. Fixed-effects regressions are estimated for three country groups (industrial, developing and emerging markets) on annual data for 87 countries from 1994 to 2010. The trade balance improves significantly after a real depreciation, and to a similar degree, in the long run for all countries, but the adjustment is significantly slower for industrial countries. Emerging markets and developing countries display relatively fast adjustment. Disaggregation into exports and imports shows that the delayed adjustment in industrial countries is almost entirely on the export side. The rate of adjustment in emerging markets is slowing over time, consistent with their eventual graduation to high-income status. The ratio of trade to GDP is also highly sensitive to the real effective exchange rate, with a real depreciation of 10 % raising the trade/GDP ratio across the sample by approximately 4 %. This result, which presumably reflects movements in the prices of tradables relative to non-tradables, raises questions about the widespread use of the trade/GDP ratio as a trade policy indicator, without adjustment for real exchange rate effects
Gorenstein homological algebra and universal coefficient theorems
We study criteria for a ring—or more generally, for a small category—to be Gorenstein and for a module over it to be of finite projective dimension. The goal is to unify the universal coefficient theorems found in the literature and to develop machinery for proving new ones. Among the universal coefficient theorems covered by our methods we find, besides all the classic examples, several exotic examples arising from the KK-theory of C*-algebras and also Neeman’s Brown–Adams representability theorem for compactly generated categories
Protecting eyewitness evidence: Examining the efficacy of a self-administered interview tool
Given the crucial role of eyewitness evidence, statements should be obtained as soon as possible after an incident. This is not always achieved due to demands on police resources. Two studies trace the development of a new tool, the Self-Administered Interview (SAI), designed to elicit a comprehensive initial statement. In Study 1, SAI participants reported more correct details than participants who provided a free recall account, and performed at the same level as participants given a Cognitive Interview. In Study 2, participants viewed a simulated crime and half recorded their statement using the SAI. After a delay of 1 week, all participants completed a free recall test. SAI participants recalled more correct details in the delayed recall task than control participants
Rudimentary G-Quadruplex-Based Telomere Capping In Saccharomyces Cerevisiae
Telomere capping conceals chromosome ends from exonucleases and checkpoints, but the full range of capping mechanisms is not well defined. Telomeres have the potential to form G-quadruplex (G4) DNA, although evidence for telomere G4 DNA function in vivo is limited. In budding yeast, capping requires the Cdc13 protein and is lost at nonpermissive temperatures in cdc13-1 mutants. Here, we use several independent G4 DNA-stabilizing treatments to suppress cdc13-1 capping defects. These include overexpression of three different G4 DNA binding proteins, loss of the G4 DNA unwinding helicase Sgs1, or treatment with small molecule G4 DNA ligands. In vitro, we show that protein-bound G4 DNA at a 3\u27 overhang inhibits 5\u27-\u3e 3\u27 resection of a paired strand by exonuclease I. These findings demonstrate that, at least in the absence of full natural capping, G4 DNA can play a positive role at telomeres in vivo
The Impact of Non-Equipartition on Cosmological Parameter Estimation from Sunyaev-Zel'dovich Surveys
The collisionless accretion shock at the outer boundary of a galaxy cluster
should primarily heat the ions instead of electrons since they carry most of
the kinetic energy of the infalling gas. Near the accretion shock, the density
of the intracluster medium is very low and the Coulomb collisional timescale is
longer than the accretion timescale. Electrons and ions may not achieve
equipartition in these regions. Numerical simulations have shown that the
Sunyaev-Zel'dovich observables (e.g., the integrated Comptonization parameter
Y) for relaxed clusters can be biased by a few percent. The Y-mass relation can
be biased if non-equipartition effects are not properly taken into account.
Using a set of hydrodynamical simulations, we have calculated three potential
systematic biases in the Y-mass relations introduced by non-equipartition
effects during the cross-calibration or self-calibration when using the galaxy
cluster abundance technique to constraint cosmological parameters. We then use
a semi-analytic technique to estimate the non-equipartition effects on the
distribution functions of Y (Y functions) determined from the extended
Press-Schechter theory. Depending on the calibration method, we find that
non-equipartition effects can induce systematic biases on the Y functions, and
the values of the cosmological parameters Omega_8, sigma_8, and the dark energy
equation of state parameter w can be biased by a few percent. In particular,
non-equipartition effects can introduce an apparent evolution in w of a few
percent in all of the systematic cases we considered. Techniques are suggested
to take into account the non-equipartition effect empirically when using the
cluster abundance technique to study precision cosmology. We conclude that
systematic uncertainties in the Y-mass relation of even a few percent can
introduce a comparable level of biases in cosmological parameter measurements.Comment: 10 pages, 3 figures, accepted for publication in the Astrophysical
Journal, abstract abridged slightly. Typos corrected in version
The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster
The regulatory protein NsrR, a member of the Rrf2 family of transcription repressors, is specifically dedicated to sensing nitric oxide (NO) in a variety of pathogenic and non-pathogenic bacteria. It has been proposed that NO directly modulates NsrR activity by interacting with a predicted [Fe-S] cluster in the NsrR protein, but no experimental evidence has been published to support this hypothesis. Here we report the purification of NsrR from the obligate aerobe Streptomyces coelicolor. We demonstrate using UV-visible, near UV CD and EPR spectroscopy that the protein contains an NO-sensitive [2Fe-2S] cluster when purified from E. coli. Upon exposure of NsrR to NO, the cluster is nitrosylated, which results in the loss of DNA binding activity as detected by bandshift assays. Removal of the [2Fe-2S] cluster to generate apo-NsrR also resulted in loss of DNA binding activity. This is the first demonstration that NsrR contains an NO-sensitive [2Fe-2S] cluster that is required for DNA binding activity
- …
