1,440 research outputs found
Time to rewrite your autobiography?
Autobiographical memory is the “diary that we all carry about” said Oscar Wilde.
Autobiographical memory defines us. And because autobiographical memory is the
foundation on which we build our identity, we like to believe that our memories are
accurate, comprehensive and robust. Anything else would challenge our sense of self. But
over the previous decade, psychological scientists have shown that autobiographical
memory can be inexact, sketchy and frail. Various suggestive techniques can encourage
people to generate memories of whole events that never happened. And these illusory
memories are often held with great confidence, emotion, clarity, and vividness—but they
are not real. In this article, we discuss research showing that suggestion can create false
memories and change our autobiography
Nonprofit Capacity Assessment: Indiana Charities, 2007
Presents findings from a survey of Indiana nonprofit organizations about their needs for technical assistance and capacity building. Aims to provide grantmakers with reliable data to inform charitable efforts and strategies in these areas
Recommended from our members
Metrics for pitch collections
Models of the perceived distance between pairs of pitch collections are a core component of broader models of the perception of tonality as a whole. Numerous different distance measures have been proposed, including voice-leading, psychoacoustic, and pitch and interval class distances; but, so far, there has been no attempt to bind these different measures into a single mathematical framework, nor to incorporate the uncertain or probabilistic nature of pitch perception (whereby tones with similar frequencies may, or may not, be heard as having the same pitch).
To achieve these aims, we embed pitch collections in novel multi-way expectation arrays, and show how metrics between such arrays can model the perceived dissimilarity of the pitch collections they embed. By modeling the uncertainties of human pitch perception, expectation arrays indicate the expected number of tones, ordered pairs of tones, ordered triples of tones and so forth, that are heard as having any given pitch, dyad of pitches, triad of pitches, and so forth. The pitches can be either absolute or relative (in which case the arrays are invariant with respect to transposition).
We provide a number of examples that show how the metrics accord well with musical intuition, and suggest some ways in which this work may be developed
Cepheid Parallaxes and the Hubble Constant
Revised Hipparcos parallaxes for classical Cepheids are analysed together
with 10 HST-based parallaxes (Benedict et al.). In a reddening-free V,I
relation we find that the coefficient of logP is the same within the
uncertainties in our Galaxy as in the LMC, contrary to some previous
suggestions. Cepheids in the inner region of NGC4258 with near solar
metallicities (Macri et al.) confirm this result. We obtain a zero-point for
the reddening-free relation and apply it to Cepheids in galaxies used by
Sandage et al. to calibrate the absolute magnitudes of SNIa and to derive the
Hubble constant. We revise their result from 62 to 70+/-5 km/s/Mpc. The
Freedman et al. 2001 value is revised from 72 to 76+/-8 km/s/Mpc. These results
are insensitive to Cepheid metallicity corrections. The Cepheids in the inner
region of NGC4258 yield a modulus of 29.22+/-0.03(int) compared with a
maser-based modulus of 29.29+/-0.15. Distance moduli for the LMC, uncorrected
for any metallicity effects, are; 18.52+/-0.03 from a reddening-free relation
in V,I; 18.47+/-0.03 from a period-luminosity relation at K; 18.45+/-0.04 from
a period-luminosity-colour relation in J,K. Adopting a metallicity correction
in V,I from Marci et al. leads to a true LMC modulus of 18.39+/-0.05.Comment: 9 pages, 1 figure, on-line material from [email protected].
Accepted for MNRA
Cepheid Period-Radius and Period-Luminosity Relations and the Distance to the LMC
We have used the infrared Barnes-Evans surface brightness technique to derive
the radii and distances of 34 Galactic Cepheid variables. Radius and distance
results obtained from both versions of the technique are in excellent
agreement. The radii of 28 variables are used to determine the period-radius
relation. This relation is found to have a smaller dispersion than in previous
studies, and is identical to the period-radius relation found by Laney & Stobie
from a completely independent method, a fact which provides persuasive evidence
that the Cepheid period-radius relation is now determined at a very high
confidence level. We use the accurate infrared distances to determine
period-luminosity relations in the V, I, J, H and K passbands from the Galactic
sample of Cepheids. We derive improved slopes of these relations from updated
LMC Cepheid samples and adopt these slopes to obtain accurate absolute
calibrations of the PL relation. By comparing these relations to the ones
defined by the LMC Cepheids, we derive strikingly consistent and precise values
for the LMC distance modulus in each of the passbands which yield a mean value
of DM (LMC) = 18.46 +- 0.02.
Our results show that the infrared Barnes-Evans technique is very insensitive
to both Cepheid metallicity and adopted reddening, and therefore a very
powerful tool to derive accurate distances to nearby galaxies by a direct
application of the technique to their Cepheid variables, rather than by
comparing PL relations of different galaxies, which introduces much more
sensitivity to metallicity and absorption corrections which are usually
difficult to determine.Comment: LaTeX, AASTeX style, 9 Figures, 10 Tables, The Astrophysical Journal
in press (accepted Oct. 14, 1997). Fig. 3 replace
The Shape and Scale of Galactic Rotation from Cepheid Kinematics
A catalog of Cepheid variables is used to probe the kinematics of the
Galactic disk. Radial velocities are measured for eight distant Cepheids toward
l = 300; these new Cepheids provide a particularly good constraint on the
distance to the Galactic center, R_0. We model the disk with both an
axisymmetric rotation curve and one with a weak elliptical component, and find
evidence for an ellipticity of 0.043 +/- 0.016 near the Sun. Using these
models, we derive R_0 = 7.66 +/- 0.32 kpc and v_circ = 237 +/- 12 km/s. The
distance to the Galactic center agrees well with recent determinations from the
distribution of RR Lyrae variables, and disfavors most models with large
ellipticities at the solar orbit.Comment: 36 pages, LaTeX, 10 figure
The euphotic zone under Arctic Ocean sea ice : vertical extents and seasonal trends
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 62 (2017): 1910–1934, doi:10.1002/lno.10543.Eight Ice-Tethered Profilers were deployed in the Arctic Ocean between 2011 and 2013 to measure vertical distributions of photosynthetically active radiation (PAR) and other bio-optical properties in ice-covered water columns, multiple times a day over periods of up to a year. With the radiometers used on these profilers, PAR could be measured to depths of only ∼20–40 m in the central Arctic in late summer under sea ice ∼1 m thick. At lower latitudes in the Beaufort Gyre, late summer PAR was measurable under ice to depths exceeding 125 m. The maximum depths of measurable PAR followed seasonal trends in insolation, with isolumes shoaling in the fall as solar elevation decreased and deepening in spring and early summer after insolation resumed and sea ice diminished. PAR intensities were often anomalously low above 20 m, likely due to a shading effect associated with local horizontal heterogeneity in light transmittance by the overlying sea ice. A model was developed to parameterize these complex vertical PAR distributions to improve estimates of the water column diffuse attenuation coefficient and other related parameters. Such a model is necessary to separate the effect of surface ice heterogeneity on under-ice PAR profiles from that of the water column itself, so that euphotic zone depth in ice-covered water columns can be computed using canonical metrics such as the 1% light level. Water column diffuse attenuation coefficients derived from such autonomously-collected PAR profile data, using this model, agreed favorably with values determined manually in complementary studies.Woods Hole Oceanographic Institution;
National Science Foundation Grant Number: ARC-085647
Theoretical Models for Classical Cepheids: IV. Mean Magnitudes and Colors and the Evaluation of Distance, Reddening and Metallicity
We discuss the metallicity effect on the theoretical visual and near-infrared
PL and PLC relations of classical Cepheids, as based on nonlinear, nonlocal and
time--dependent convective pulsating models at varying chemical composition. In
view of the two usual methods of averaging (magnitude-weighted and
intensity-weighted) observed magnitudes and colors over the full pulsation
cycle, we briefly discuss the differences between static and mean quantities.
We show that the behavior of the synthetic mean magnitudes and colors fully
reproduces the observed trend of Galactic Cepheids, supporting the validity of
the model predictions. In the second part of the paper we show how the estimate
of the mean reddening and true distance modulus of a galaxy from Cepheid VK
photometry depend on the adopted metal content, in the sense that larger
metallicities drive the host galaxy to lower extinctions and distances.
Conversely, self-consistent estimates of the Cepheid mean reddening, distance
and metallicity may be derived if three-filter data are taken into account. By
applying the theoretical PL and PLC relations to available BVK data of Cepheids
in the Magellanic Clouds we eventually obtain Z \sim 0.008, E(B-V) \sim 0.02
mag, DM \sim 18.63 mag for LMC and Z \sim 0.004, E(B-V) \sim 0.01 mag., DM \sim
19.16 mag. for SMC. The discrepancy between such reddenings and the current
values based on BVI data is briefly discussed.Comment: 16 pages, 11 postscript figures, accepted for publication on Ap
On the distance of the Magellanic Clouds using Cepheid NIR and optical-NIR Period Wesenheit Relations
We present the largest near-infrared (NIR) data sets, , ever collected
for classical Cepheids in the Magellanic Clouds (MCs). We selected fundamental
(FU) and first overtone (FO) pulsators, and found 4150 (2571 FU, 1579 FO)
Cepheids for Small Magellanic Cloud (SMC) and 3042 (1840 FU, 1202 FO) for Large
Magellanic Cloud (LMC). Current sample is 2--3 times larger than any sample
used in previous investigations with NIR photometry. We also discuss optical
photometry from OGLE-III. NIR and optical--NIR Period-Wesenheit (PW)
relations are linear over the entire period range () and their slopes are, within the intrinsic dispersions, common between the
MCs. These are consistent with recent results from pulsation models and
observations suggesting that the PW relations are minimally affected by the
metal content. The new FU and FO PW relations were calibrated using a sample of
Galactic Cepheids with distances based on trigonometric parallaxes and Cepheid
pulsation models. By using FU Cepheids we found a true distance moduli of
mag (LMC) and
mag (SMC). These estimates
are the weighted mean over ten PW relations and the systematic errors account
for uncertainties in the zero-point and in the reddening law. We found similar
distances using FO Cepheids
( mag [LMC] and
mag [SMC]). These new MC
distances lead to the relative distance, mag (FU, ) and mag (FO, ),which agrees quite
well with previous estimates based on robust distance indicators.Comment: 17 pages, 7 figure
- …
