1,082 research outputs found

    Conserved Currents and the Energy Momentum Tensor in Conformally Invariant Theories for General Dimensions

    Get PDF
    The implications of conformal invariance, as relevant in quantum field theories at a renormalisation group fixed point, are analysed with particular reference to results for correlation functions involving conserved currents and the energy momentum tensor. Ward identities resulting from conformal invariance are discussed. Explicit expressions for two and three point functions, which are essentially determined by conformal invariance, are obtained. As special cases we consider the three point functions for two vector and an axial current in four dimensions, which realises the usual anomaly simply and unambiguously, and also for the energy momentum tensor in general dimension dd. The latter is shown to have two linearly independent forms in which the Ward identities are realised trivially, except if d=4d = 4, when the two forms become degenerate. This is necessary in order to accommodate the two independent forms present in the trace of the energy momentum tensor on curved space backgrounds for conformal field theories in four dimensions. The coefficients of the two trace anomaly terms are related to the three parameters describing the general energy momentum tensor three point function. The connections with gravitational effective actions depending on a background metric are described. A particular form due to Riegert is shown to be unacceptable. Conformally invariant expressions for the effective action in four dimensions are obtained using the Green function for a differential operator which has simple properties under local rescalings of the metric.Comment: 44 pages uses harvmac, version to be published in Nuclear Physics, some additions, misprints corrected and extra reference

    F as in Fat: How Obesity Threatens America’s Future 2012

    Get PDF
    https://www.rwjf.org/content/dam/farm/reports/reports/2012/rwjf40131

    Conformal Partial Waves and the Operator Product Expansion

    Full text link
    By solving the two variable differential equations which arise from finding the eigenfunctions for the Casimir operator for O(d,2)O(d,2) succinct expressions are found for the functions, conformal partial waves, representing the contribution of an operator of arbitrary scale dimension Δ\Delta and spin \ell together with its descendants to conformal four point functions for d=4d=4, recovering old results, and also for d=6d=6. The results are expressed in terms of ordinary hypergeometric functions of variables x,zx,z which are simply related to the usual conformal invariants. An expression for the conformal partial wave amplitude valid for any dimension is also found in terms of a sum over two variable symmetric Jack polynomials which is used to derive relations for the conformal partial waves.Comment: 17 pages, uses harvmac, v2 correction to eq. 2.2

    The brain recovery core: Building a system of organized stroke rehabilitation and outcomes assessment across the continuum of care

    Get PDF
    none10siThis Special Interest article describes a multidisciplinary, interinstitutional effort to build an organized system of stroke rehabilitation and outcomes measurement across the continuum of care. This system is focused on a cohort of patients who are admitted with the diagnosis of stroke to our acute facility, are discharged to inpatient and/or outpatient rehabilitation at our free-standing facility, and are then discharged to the community. This article first briefly explains the justification, goals, and purpose of the Brain Recovery Core system. The next sections describe its development and implementation, with details on the aspects related to physical therapy. The article concludes with an assessment of how the Brain Recovery Core system has changed and improved delivery of rehabilitation services. It is hoped that the contents of this article will be useful in initiating discussions and potentially facilitating similar efforts among other centers.mixedLang, Catherine E.; Bland, Marghuretta D.; Connor, Lisa Tabor; Fucetola, Robert; Whitson, Michelle; Edmiaston, Jeff; Karr, Clayton; Sturmoski, Audra; Baty, Jack; Corbetta, MaurizioLang, Catherine E.; Bland, Marghuretta D.; Connor, Lisa Tabor; Fucetola, Robert; Whitson, Michelle; Edmiaston, Jeff; Karr, Clayton; Sturmoski, Audra; Baty, Jack; Corbetta, Maurizi

    Expression of the neural stem cell markers NG2 and L1 in human angiomyolipoma: are angiomyolipomas neoplasms of stem cells?

    Get PDF
    Angiomyolipomas are benign tumors of the kidney which express phenotypes of smooth muscle, fat, and melanocytes. These tumors appear with increased frequency in the autosomal dominant disorder tuberous sclerosis and are the leading cause of morbidity in adults with tuberous sclerosis. While benign, these tumors are capable of provoking life threatening hemorrhage and replacement of the kidney parenchyma, resulting in renal failure. The histogenesis of these tumors is currently unclear, although currently, we believe these tumors arise from perivascular epithelioid cells of which no normal counterpart has been convincingly demonstrated. Recently, stem cell precursors have been recognized that can give rise to smooth muscle and melanocytes. These precursors have been shown to express the neural stem cell marker NG2 and L1. In order to determine whether angiomyolipomas, which exhibit smooth muscle and melanocytic phenotypes, express NG2 and L1, we performed immunocytochemistry on a cell line derived from a human angiomyolipoma, and found that these cells are uniformly positive. Immunohistochemistry of human angiomyolipoma specimens revealed uniform staining of tumor cells, while renal cell carcinomas revealed positivity only of angiogenic vessels. These results support a novel histogenesis of angiomyolipoma as a defect in differentiation of stem cell precursors

    How to abolish the cheque clearing system but keep and improve cheques

    Get PDF
    Nicholas Bohm and Jack Lang consider a digital alternative to paper cheques, incorporating the use of a digital signature

    Electric Field-Tuned Topological Phase Transition in Ultra-Thin Na3Bi - Towards a Topological Transistor

    Full text link
    The electric field induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor [1-4]. In this scheme an electric field can switch 'on' the ballistic flow of charge and spin along dissipationless edges of the two-dimensional (2D) quantum spin Hall insulator [5-9], and when 'off' is a conventional insulator with no conductive channels. Such as topological transistor is promising for low-energy logic circuits [4], which would necessitate electric field-switched materials with conventional and topological bandgaps much greater than room temperature, significantly greater than proposed to date [6-8]. Topological Dirac semimetals(TDS) are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases [3,10-16]. Here we use scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES) to show that mono- and bilayer films of TDS Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the absence of electric field. Upon application of electric field by doping with potassium or by close approach of the STM tip, the bandgap can be completely closed then re-opened with conventional gap greater than 100 meV. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy kT = 25 meV at room temperature, suggest that ultrathin Na3Bi is suitable for room temperature topological transistor operation

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    corecore