1,888 research outputs found

    Concurrence of dynamical phase transitions at finite temperature in the fully connected transverse-field Ising model

    Full text link
    We construct the finite-temperature dynamical phase diagram of the fully connected transverse-field Ising model from the vantage point of two disparate concepts of dynamical criticality. An analytical derivation of the classical dynamics and exact diagonalization simulations are used to study the dynamics after a quantum quench in the system prepared in a thermal equilibrium state. The different dynamical phases characterized by the type of non-analyticities that emerge in an appropriately defined Loschmidt-echo return rate directly correspond to the dynamical phases determined by the spontaneous breaking of Z2\mathbb{Z}_2 symmetry in the long-time steady state. The dynamical phase diagram is qualitatively different depending on whether the initial thermal state is ferromagnetic or paramagnetic. Whereas the former leads to a dynamical phase diagram that can be directly related to its equilibrium counterpart, the latter gives rise to a divergent dynamical critical temperature at vanishing final transverse-field strength.Comment: journal article, 15 pages, 12 figures. Final versio

    Orbital ordering transition in Ca2_2RuO4_4 observed with resonant x-ray diffraction

    Full text link
    Resonant x-ray diffraction performed at the LII\rm L_{II} and LIII\rm L_{III} absorption edges of Ru has been used to investigate the magnetic and orbital ordering in Ca2_2RuO4_4 single crystals. A large resonant enhancement due to electric dipole 2p4d2p\to 4d transitions is observed at the wave-vector characteristic of antiferromagnetic ordering. Besides the previously known antiferromagnetic phase transition at TN=110\rm T_{N}=110 K, an additional phase transition, between two paramagnetic phases, is observed around 260 K. Based on the polarization and azimuthal angle dependence of the diffraction signal, this transition can be attributed to orbital ordering of the Ru t2gt_{2g} electrons. The propagation vector of the orbital order is inconsistent with some theoretical predictions for the orbital state of Ca2_2RuO4_4.Comment: to appear in PR

    How should novelty be valued in science?

    Get PDF
    <p>Box plot analysis of serum concentrations of sRAGE (A), esRAGE (B), S100A9 (C) and HMGB1 (D) in patients with CTEPH (n = 26) and controls (n = 33). Independent Student’s t-test was used to compare groups. <i>RAGE</i> receptor for advanced glycation endproducts, <i>sRAGE</i> soluble RAGE, <i>esRAGE</i> endogenous secretory RAGE, <i>S100A9</i> member of S100 family of Ca+ binding proteins, <i>HMGB1</i> high mobility group box1, <i>CTEPH</i> chronic thromboembolic pulmonary hypertension.</p

    As-vacancies, local moments, and Pauli limiting in LaO_0.9F_0.1FeAs_(1-delta) superconductors

    Full text link
    We report magnetization measurements of As-deficient LaO_0.9F_0.1FeAs_1-delta (delta about 0.06) samples with improved superconducting properties as compared with As-stoichiometric optimally doped La-1111 samples. In this As-deficient system with almost homogeneously distributed As-vacancies (AV), as suggested by the (75)As-nuclear quadrupole resonance (NQR) measurements,we observe a strong enhancement of the spin-susceptibility by a factor of 3-7. This observation is attributed to the presence of an electronically localized state around each AV, carrying a magnetic moment of about 3.2 mu_Bohr per AV or 0.8 mu_Bohr/Fe atom. From theoretical considerations we find that the formation of a local moment on neighboring iron sites of an AV sets in when the local Coulomb interaction exceeds a critical value of about 1.0 eV in the dilute limit. Its estimated value amounts to ~ 2.5 eV and implies an upper bound of ~ 2 eV for the Coulomb repulsion at Fe sites beyond the first neighbor-shell of an AV. Electronic correlations are thus moderate/weak in doped La-1111. The strongly enhanced spin susceptibility is responsible for the Pauli limiting behavior of the superconductivity that we observe in As-deficient LaO_0.9F_0.1FeAs_1-delta. In contrast, no Pauli limiting behavior is found for the optimally doped, As-stoichiometric LaO_0.9F_0.1FeAs superconductor in accord with its low spin susceptibility.Comment: 11 pages, 9 figure

    Effects of impurities and vortices on the low-energy spin excitations in high-Tc materials

    Full text link
    We review a theoretical scenario for the origin of the spin-glass phase of underdoped cuprate materials. In particular it is shown how disorder in a correlated d-wave superconductor generates a magnetic phase by inducing local droplets of antiferromagnetic order which eventually merge and form a quasi-long range ordered state. When correlations are sufficiently strong, disorder is unimportant for the generation of static magnetism but plays an additional role of pinning disordered stripe configurations. We calculate the spin excitations in a disordered spin-density wave phase, and show how disorder and/or applied magnetic fields lead to a slowing down of the dynamical spin fluctuations in agreement with neutron scattering and muon spin rotation (muSR) experiments.Comment: 4 pages, 3 figures, submitted for SNS2010 conference proceeding

    Fast logarithmic Fourier-Laplace transform of nonintegrable functions

    Full text link
    We present an efficient and very flexible numerical fast Fourier-Laplace transform, that extends the logarithmic Fourier transform (LFT) introduced by Haines and Jones [Geophys. J. Int. 92(1):171 (1988)] for functions varying over many scales to nonintegrable functions. In particular, these include cases of the asymptotic form f(ν0)νaf(\nu\to0)\sim\nu^a and f(ν)νbf(|\nu|\to\infty)\sim\nu^b with arbitrary real a>ba>b. Furthermore, we prove that the numerical transform converges exponentially fast in the number of data points, provided that the function is analytic in a cone ν<θν|\Im{\nu}|<\theta|\Re{\nu}| with a finite opening angle θ\theta around the real axis and satisfies f(ν)f(1/ν)<νc|f(\nu)f(1/\nu)|<\nu^c as ν0\nu\to 0 with a positive constant cc, which is the case for the class of functions with power-law tails. Based on these properties we derive ideal transformation parameters and discuss how the logarithmic Fourier transform can be applied to convolutions. The ability of the logarithmic Fourier transform to perform these operations on multiscale (non-integrable) functions with power-law tails with exponentially small errors makes it the method of choice for many physical applications, which we demonstrate on typical examples. These include benchmarks against known analytical results inaccessible to other numerical methods, as well as physical models near criticality.Comment: 14 pages, 8 figure

    Superconducting Volume Fraction in Overdoped Regime of La_2-x_Sr_x_CuO_4_: Implication for Phase Separation from Magnetic-Susceptibility Measurement

    Full text link
    We have grown a single crystal of La_2-x_Sr_x_CuO_4_ in which the Sr concentration, x, continuously changes from 0.24 to 0.29 in the overdoped regime and obtained many pieces of single crystals with different x values by slicing the single crystal. From detailed measurements of the magnetic susceptibility, chi, of each piece, it has been found that the absolute value of chi at the measured lowest temperature 2 K, |chi_2K_|, on field cooling rapidly decreases with increasing x as well as the superconducting (SC) transition temperature. As the value of |chi_2K_| is regarded as corresponding to the SC volume fraction in a sample, it has been concluded that a phase separation into SC and normal-state regions occurs in a sample of La_2-x_Sr_x_CuO_4_ in the overdoped regime.Comment: 4 pages, 3 figures, ver. 2 has been accepted in J. Phys. Soc. Jp
    corecore