21,878 research outputs found
Topological Charge and the Spectrum of the Fermion Matrix in Lattice-QED_2
We investigate the interplay between topological charge and the spectrum of
the fermion matrix in lattice-QED_2 using analytic methods and Monte Carlo
simulations with dynamical fermions. A new theorem on the spectral
decomposition of the fermion matrix establishes that its real eigenvalues (and
corresponding eigenvectors) play a role similar to the zero eigenvalues (zero
modes) of the Dirac operator in continuous background fields. Using numerical
techniques we concentrate on studying the real part of the spectrum. These
results provide new insights into the behaviour of physical quantities as a
function of the topological charge. In particular we discuss fermion
determinant, effective action and pseudoscalar densities.Comment: 33 pages, 10 eps-figures; reference adde
Bipolaron-SO(5) Non-Fermi Liquid in a Two-channel Anderson Model with Phonon-assisted Hybridizations
We analyze non-Fermi liquid (NFL) properties along a line of critical points
in a two-channel Anderson model with phonon-assisted hybridizations. We succeed
in identifying hidden nonmagnetic SO(5) degrees of freedom for
valence-fluctuation regime and analyze the model on the basis of boundary
conformal field theory. We find that the NFL spectra along the critical line,
which is the same as those in the two-channel Kondo model, can be alternatively
derived by a fusion in the nonmagnetic SO(5) sector. The leading irrelevant
operators near the NFL fixed points vary as a function of Coulomb repulsion U;
operators in the spin sector dominate for large U, while those in the SO(5)
sector do for small U, and we confirm this variation in our numerical
renormalization group calculations. As a result, the thermodynamic singularity
for small U differs from that of the conventional two-channel Kondo problem.
Especially, the impurity contribution to specific heat is proportional to
temperature and bipolaron fluctuations, which are coupled electron-phonon
fluctuations, diverge logarithmically at low temperatures for small U.Comment: 16 pages, 4 figures, 3 table
Wilson, fixed point and Neuberger's lattice Dirac operator for the Schwinger model
We perform a comparison between different lattice regularizations of the
Dirac operator for massless fermions in the framework of the single and two
flavor Schwinger model. We consider a) the Wilson-Dirac operator at the
critical value of the hopping parameter; b) Neuberger's overlap operator; c)
the fixed point operator. We test chiral properties of the spectrum, dispersion
relations and rotational invariance of the mesonic bound state propagators.Comment: Revised version; 13 pages (LaTeX), 3 figures (EPS
Profile alterations of a symmetrical light pulse coming through a quantum well
The theory of a response of a two-energy-level system, irradiated by
symmetrical light pulses, has been developed.(Suchlike electronic system
approximates under the definite conditions a single ideal quantum well (QW) in
a strong magnetic field {\bf H}, directed perpendicularly to the QW's plane, or
in magnetic field absence.) The general formulae for the time-dependence of
non-dimensional reflection {\cal R}(t), absorption {\cal A}(t) and transmission
{\cal T}(t) of a symmetrical light pulse have been obtained. It has been shown
that the singularities of three types exist on the dependencies {\cal R}(t),
{\cal A}(t), {\cal T}(t). The oscillating time dependence of {\cal R}(t), {\cal
A}(t), {\cal T}(t) on the detuning frequency \Delta\omega=\omega_l-\omega_0
takes place. The oscillations are more easily observable when
\Delta\omega\simeq\gamma_l. The positions of the total absorption, reflection
and transparency singularities are examined when the frequency \omega_l is
detuned.Comment: 9 pages, 13 figures with caption
Effect of the Spatial Dispersion on the Shape of a Light Pulse in a Quantum Well
Reflectance, transmittance and absorbance of a symmetric light pulse, the
carrying frequency of which is close to the frequency of interband transitions
in a quantum well, are calculated. Energy levels of the quantum well are
assumed discrete, and two closely located excited levels are taken into
account. A wide quantum well (the width of which is comparable to the length of
the light wave, corresponding to the pulse carrying frequency) is considered,
and the dependance of the interband matrix element of the momentum operator on
the light wave vector is taken into account. Refractive indices of barriers and
quantum well are assumed equal each other. The problem is solved for an
arbitrary ratio of radiative and nonradiative lifetimes of electronic
excitations. It is shown that the spatial dispersion essentially affects the
shapes of reflected and transmitted pulses. The largest changes occur when the
radiative broadening is close to the difference of frequencies of interband
transitions taken into account.Comment: 7 pages, 5 figure
Principals of the theory of light reflection and absorption by low-dimensional semiconductor objects in quantizing magnetic fields at monochromatic and pulse excitations
The bases of the theory of light reflection and absorption by low-dimensional
semiconductor objects (quantum wells, wires and dots) at both monochromatic and
pulse irradiations and at any form of light pulses are developed. The
semiconductor object may be placed in a stationary quantizing magnetic field.
As an example the case of normal light incidence on a quantum well surface is
considered. The width of the quantum well may be comparable to the light wave
length and number of energy levels of electronic excitations is arbitrary. For
Fourier-components of electric fields the integral equation (similar to the
Dyson-equation) and solutions of this equation for some individual cases are
obtained.Comment: 14 page
Transmission of a Symmetric Light Pulse through a Wide QW
The reflection, transmission and absorption of a symmetric electromagnetic
pulse, which carrying frequency is close to the frequency of an interband
transition in a QW (QW), are obtained. The energy levels of a QW are assumed
discrete, one exited level is taken into account. The case of a wide QW is
considered when a length of the pulse wave, appropriate to the carrying
frequency, is comparable to the QW's width. In figures the time dependencies of
the dimensionless reflection, absorption are transmission are represented. It
is shown, that the spatial dispersion and a distinction in refraction indexes
influence stronger reflection.Comment: 8 pages,8 figures with caption
Influence of Anomalous Dispersion on Optical Characteristics of Quantum Wells
Frequency dependencies of optical characteristics (reflection, transmission
and absorption of light) of a quantum well are investigated in a vicinity of
interband resonant transitions in a case of two closely located excited energy
levels. A wide quantum well in a quantizing magnetic field directed normally to
the quantum-well plane, and monochromatic stimulating light are considered.
Distinctions between refraction coefficients of barriers and quantum well, and
a spatial dispersion of the light wave are taken into account. It is shown that
at large radiative lifetimes of excited states in comparison with nonradiative
lifetimes, the frequency dependence of the light reflection coefficient in the
vicinity of resonant interband transitions is defined basically by a curve,
similar to the curve of the anomalous dispersion of the refraction coefficient.
The contribution of this curve weakens at alignment of radiative and
nonradiative times, it is practically imperceptible at opposite ratio of
lifetimes . It is shown also that the frequency dependencies similar to the
anomalous dispersion do not arise in transmission and absorption coefficients.Comment: 10 pages, 6 figure
Elastic Light Scattering by Semiconductor Quantum Dots
Elastic light scattering by low-dimensional semiconductor objects is
investigated theoretically. The differential cross section of resonant light
scattering on excitons in quantum dots is calculated. The polarization and
angular distribution of scattered light do not depend on the quantum-dot form,
sizes and potential configuration if light wave lengths exceed considerably the
quantum-dot size. In this case the magnitude of the total light scattering
cross section does not depend on quantum-dot sizes. The resonant total light
scattering cross section is about a square of light wave length if the exciton
radiative broadening exceeds the nonradiative broadening. Radiative broadenings
are calculated
- …
