10,301 research outputs found

    Isospin effect on nuclear stopping in intermediate energy Heavy Ion Collisions

    Get PDF
    By using the Isospin Dependent Quantum Molecular Dynamics Model (IQMD), we study the dependence of nuclear stopping Q_{ZZ}/A and R in intermediate energy heavy ion collisions on system size, initial N/Z, isospin symmetry potential and the medium correction of two-body cross sections. We find the effect of initial N/Z ratio, isospin symmetry potential on stopping is weak. The excitation function of Q_{ZZ}/A and R depends on the form of medium correction of two-body cross sections, the equation of state of nuclear matter (EOS). Our results show the behavior of the excitation function of Q_{ZZ}/A and R can provide clearer information of the isospin dependence of the medium correction of two-body cross sections.Comment: 3 pages including 4 figure

    Domain Adaptive Attention Model for Unsupervised Cross-Domain Person Re-Identification

    Full text link
    Person re-identification (Re-ID) across multiple datasets is a challenging yet important task due to the possibly large distinctions between different datasets and the lack of training samples in practical applications. This work proposes a novel unsupervised domain adaption framework which transfers discriminative representations from the labeled source domain (dataset) to the unlabeled target domain (dataset). We propose to formulate the domain adaption task as an one-class classification problem with a novel domain similarity loss. Given the feature map of any image from a backbone network, a novel domain adaptive attention model (DAAM) first automatically learns to separate the feature map of an image to a domain-shared feature (DSH) map and a domain-specific feature (DSP) map simultaneously. Specially, the residual attention mechanism is designed to model DSP feature map for avoiding negative transfer. Then, a DSH branch and a DSP branch are introduced to learn DSH and DSP feature maps respectively. To reduce domain divergence caused by that the source and target datasets are collected from different environments, we force to project the DSH feature maps from different domains to a new nominal domain, and a novel domain similarity loss is proposed based on one-class classification. In addition, a novel unsupervised person Re-ID loss is proposed to take full use of unlabeled target data. Extensive experiments on the Market-1501 and DukeMTMC-reID benchmarks demonstrate state-of-the-art performance of the proposed method. Code will be released to facilitate further studies on the cross-domain person re-identification task

    A Large Catalogue of Multi-wavelength GRB Afterglows I: Color Evolution And Its Physical Implication

    Full text link
    The spectrum of gamma-ray burst (GRB) afterglows can be studied with color indices. Here we present a large comprehensive catalogue of 70 GRBs with multi-wavelength optical transient data on which we perform a systematic study to find the temporal evolution of color indices. We categorize them into two samples based on how well the color indices are evaluated. The Golden sample includes 25 bursts mostly observed by GROND, and the Silver sample includes 45 bursts observed by other telescopes. For the Golden sample, we find that 95\% of the color indices do not vary over time. However, the color indices do vary during short periods in most bursts. The observed variations are consistent with effects of (i) the cooling frequency crossing the studied energy bands in a wind medium (43\%) and in a constant density medium (30\%), (ii) early dust extinction (12\%), (iii) transition from reverse shock to forward shock emission (5\%), or (iv) an emergent supernova emission (10\%). We also study the evolutionary properties of the mean color indices for different emission episodes. We find that 86\% of the color indices in the 70 bursts show constancy between consecutive ones. The color index variations occur mainly during the late GRB-SN bump, the flare and early reversed-shock emission components. We further perform a statistical analysis of various observational properties and model parameters (spectral index βoCI\beta_{o}^{\rm CI}, electron spectral indices pCIp^{\rm CI}, etc.) using color indices. Overall, we conclude that \sim 90\% of colors are constant in time and can be accounted for by the simplest external forward shock model, while the varying color indices call for more detailed modeling.Comment: 107 Pages, 102 Figures, 7 Tables, accepted for publication in ApJ

    Spectral State Transitions of the Ultraluminous X-ray Source IC 342 X-1

    Get PDF
    We observed the Ultraluminous X-ray Source IC 342 X-1 simultaneously in X-ray and radio with Chandra and the JVLA to investigate previously reported unresolved radio emission coincident with the ULX. The Chandra data reveal a spectrum that is much softer than observed previously and is well modelled by a thermal accretion disc spectrum. No significant radio emission above the rms noise level was observed within the region of the ULX, consistent with the interpretation as a thermal state though other states cannot be entirely ruled out with the current data. We estimate the mass of the black hole using the modelled inner disc temperature to be 30 MMcosi200 M30~\mathrm{M_{\odot}} \lesssim M\sqrt{\mathrm{cos}i}\lesssim200~\mathrm{M_{\odot}} based on a Shakura-Sunyaev disc model. Through a study of the hardness and high-energy curvature of available X-ray observations, we find that the accretion state of X-1 is not determined by luminosity alone.Comment: 10 pages, 5 Figures. MNRAS: Accepted 2014 July 2

    DNA Photolithography with Cinnamate Crosslinkers

    Get PDF
    The present invention relates generally to cinnamate crosslinkers. Specifically, the present invention relates to gels, biochips, and functionalized surfaces useful as probes, in assays, in gels, and for drug delivery, and methods of making the same using a newly-discovered crosslinking configuration

    Constraining Anisotropic Lorentz Violation via the Spectral-Lag Transition of GRB 160625B

    Full text link
    Violations of Lorentz invariance can lead to an energy-dependent vacuum dispersion of light, which results in arrival-time differences of photons arising with different energies from a given transient source. In this work, direction-dependent dispersion constraints are obtained on nonbirefringent Lorentz-violating effects, using the observed spectral lags of the gamma-ray burst GRB 160625B. This burst has unusually large high-energy photon statistics, so we can obtain constraints from the true spectral time lags of bunches of high-energy photons rather than from the rough time lag of a single highest-energy photon. Also, GRB 160625B is the only burst to date having a well-defined transition from positive lags to negative lags, which provides a unique opportunity to distinguish Lorentz-violating effects from any source-intrinsic time lag in the emission of photons of different energy bands. Our results place comparatively robust two-sided constraints on a variety of isotropic and anisotropic coefficients for Lorentz violation, including first bounds on Lorentz-violating effects from operators of mass dimension ten in the photon sector.Comment: 6 pages, 3 figures, 1 table. Accepted for publication in Ap
    corecore