4,433 research outputs found
Antikaon production in nucleon-nucleon reactions near threshold
The antikaon production cross section from nucleon-nucleon reactions near
threshold is studied in a meson exchange model. We include both pion and kaon
exchange, but neglect the interference between the amplitudes. In case of pion
exchange the antikaon production cross section can be expressed in terms of the
antikaon production cross section from a pion-nucleon interaction, which we
take from the experimental data if available. Otherwise, a -resonance
exchange model is introduced to relate the different reaction cross sections.
In case of kaon exchange the antikaon production cross section is related to
the elastic and cross sections, which are again taken from
experimental measurements. We find that the one-meson exchange model gives a
satisfactory fit to the available data for the cross section
at high energies. We compare our predictions for the cross section near
threshold with an earlier empirical parameterization and that from phase space
models.Comment: 16 pages, LaTeX, 5 postscript figures included, submitted to Z. Phys.
Alloy selections in high-temperature metal hydride heat pump systems for industrial waste heat recovery
In an energy intensive industrial site such as a steel plant, there are plenty of medium and low temperature waste heat which could be recovered for heating purposes with advanced and feasible technologies for example metal hydride (MH) heat pumps. Compared to other heat pump systems such as those with compression and absorption cycles, the MH heat pump has some distinctive advantages including low carbon system in terms of less electricity input and environmentally friendly working mediums, compactness, and most importantly achievable heat output with relatively high temperature. However, the applicable alloys for the high-temperature MH heat pump systems are critical and need to be purposely selected. Accordingly, in this paper, a comprehensive procedure to select alloys for the high-temperature MH heat pump systems is explained based on the operating temperatures, system efficiencies and thermodynamic equilibriums. From the database of literatures, totally 82 alloys are potentially used for this special application of which 1560 alloy pairs are formed and each pair consists of one high-temperature alloy and another low-temperature alloy. Subsequently, a number of applicable alloys are selected for each designed temperature of heat pump output and one pair is ultimately finalised. The alloy can be further examined considering of its thermophysical properties, heat transfer behaviours, costs and safety issues
Performance analysis of a metal hydride refrigeration system
The varying applications of metal hydride refrigeration systems, such as cold storage and space air conditioning,
grant them important advantages over conventional ones. These advantages include being a low-grade heat
driven, more environmentally friendly and renewable working fluid with greater compactness and fewer moving
parts. However, a metal hydride refrigeration system always operates under unsteady conditions due to the cyclic
hydriding and dehydriding processes involved. To analyse and optimise the metal hydride refrigeration system’s
design and performance, in this paper, a comprehensive transient system model has been developed with a new
and revised intrinsic kinetic correlation inclusive of the essential operating controls and applicable process
conditions of regeneration, cooling and transitions in between. In addition, the correlative model on the characterisation process of pressure, concentration and temperature (PCT) profiles for the metal hydride alloys
employed in the system has been developed and is introduced briefly in this paper. It is integrated in the system
model and ensures the accurate prediction of maximum capacities for the metal hydride isothermal desorption
and absorption processes. The developed transient system model has been validated through comparison with
experimental results from literature on the medium-temperature cooling process of a metal hydride refrigeration
system. The model simulation is conducted for a specially designed low-temperature metal hydride refrigeration
system at different operating conditions and controls. In quantity, when the high-grade heat source temperature
increases from 90 ◦C to 120 ◦C, the low-grade heat source temperature increases from − 20 ◦C to 10 ◦C, the
medium-grade heat sink temperature decreases from 30 ◦C to 15 ◦C, and the time period for regeneration or
cooling process decreases from 10 min to 4 min, the cooling COP increases by 112.0%, 136.6%, 19.3% and
31.8% respectively. The optimisation strategies for the system operating conditions and controls are therefore
recommended based on the detailed performance analyses of the system simulation results
Valence bond solid formalism for d-level one-way quantum computation
The d-level or qudit one-way quantum computer (d1WQC) is described using the
valence bond solid formalism and the generalised Pauli group. This formalism
provides a transparent means of deriving measurement patterns for the
implementation of quantum gates in the computational model. We introduce a new
universal set of qudit gates and use it to give a constructive proof of the
universality of d1WQC. We characterise the set of gates that can be performed
in one parallel time step in this model.Comment: 26 pages, 9 figures. Published in Journal of Physics A: Mathematical
and Genera
Clinical concentrations of peroxidases cause dysbiosis in invitro oral biofilms
Background and Objective: Little is known about the initiation of dysbiosis in oral biofilms, a topic of prime importance for understanding the etiology of, and preventing, periodontitis. The aim of this study was to evaluate the effect of different concentrations of crevicular and salivary peroxidase and catalase on dysbiosis in multispecies biofilms in vitro.
Material and Methods: The spotting technique was used to identify the effect of different concentrations of myeloperoxidase, lactoperoxidase, erythrocyte catalase, and horseradish peroxidase in salivary and crevicular fluid on the inhibitory effect of commensals on pathobiont growth. Vitality-quantitative real-time PCR was performed to quantify the dysbiotic effect of the peroxidases (adjusted to concentrations found in periodontal health, gingivitis, and periodontitis) on multispecies microbial communities.
Results: Agar plate and multispecies ecology experiments showed that production of hydrogen peroxide (H2O2) by commensal bacteria decreases pathobiont growth and colonization. Peroxidases at concentrations found in crevicular fluid and saliva neutralized this inhibitory effect. In multispecies communities, myeloperoxidase, at the crevicular fluid concentrations found in periodontitis, resulted in a 1-3 Log increase in pathobionts when compared with the crevicular fluid concentrations found in periodontal health. The effect of salivary lactoperoxidase and salivary myeloperoxidase concentrations was, in general, similar to the effect of crevicular myeloperoxidase concentrations.
Conclusions: Commensal species suppress pathobionts by producing H2O2. Catalase and peroxidases, at clinically relevant concentrations, can neutralize this effect and thereby can contribute to dysbiosis by allowing the outgrowth of pathobionts
Role of the mesoamygdaloid dopamine projection in emotional learning
Amygdala dopamine is crucially involved in the acquisition of Pavlovian associations, as measured via conditioned approach to the location of the unconditioned stimulus (US). However, learning begins before skeletomotor output, so this study assessed whether amygdala dopamine is also involved in earlier 'emotional' learning. A variant of the conditioned reinforcement (CR) procedure was validated where training was restricted to curtail the development of selective conditioned approach to the US location, and effects of amygdala dopamine manipulations before training or later CR testing assessed. Experiment 1a presented a light paired (CS+ group) or unpaired (CS- group) with a US. There were 1, 2 or 10 sessions, 4 trials per session. Then, the US was removed, and two novel levers presented. One lever (CR+) presented the light, and lever pressing was recorded. Experiment 1b also included a tone stimulus. Experiment 2 applied intra-amygdala R(+) 7-OH-DPAT (10 nmol/1.0 A mu l/side) before two training sessions (Experiment 2a) or a CR session (Experiment 2b). For Experiments 1a and 1b, the CS+ group preferred the CR+ lever across all sessions. Conditioned alcove approach during 1 or 2 training sessions or associated CR tests was low and nonspecific. In Experiment 2a, R(+) 7-OH-DPAT before training greatly diminished lever pressing during a subsequent CR test, preferentially on the CR+ lever. For Experiment 2b, R(+) 7-OH-DPAT infusions before the CR test also reduced lever pressing. Manipulations of amygdala dopamine impact the earliest stage of learning in which emotional reactions may be most prevalent
Determination of the D0 -> K+pi- Relative Strong Phase Using Quantum-Correlated Measurements in e+e- -> D0 D0bar at CLEO
We exploit the quantum coherence between pair-produced D0 and D0bar in
psi(3770) decays to study charm mixing, which is characterized by the
parameters x and y, and to make a first determination of the relative strong
phase \delta between doubly Cabibbo-suppressed D0 -> K+pi- and Cabibbo-favored
D0bar -> K+pi-. We analyze a sample of 1.0 million D0D0bar pairs from 281 pb^-1
of e+e- collision data collected with the CLEO-c detector at E_cm = 3.77 GeV.
By combining CLEO-c measurements with branching fraction input and
time-integrated measurements of R_M = (x^2+y^2)/2 and R_{WS} = Gamma(D0 ->
K+pi-)/Gamma(D0bar -> K+pi-) from other experiments, we find \cos\delta = 1.03
+0.31-0.17 +- 0.06, where the uncertainties are statistical and systematic,
respectively. In addition, by further including external measurements of charm
mixing parameters, we obtain an alternate measurement of \cos\delta = 1.10 +-
0.35 +- 0.07, as well as x\sin\delta = (4.4 +2.7-1.8 +- 2.9) x 10^-3 and \delta
= 22 +11-12 +9-11 degrees.Comment: 37 pages, also available through
http://www.lns.cornell.edu/public/CLNS/2007/. Incorporated referee's comment
Second law, entropy production, and reversibility in thermodynamics of information
We present a pedagogical review of the fundamental concepts in thermodynamics
of information, by focusing on the second law of thermodynamics and the entropy
production. Especially, we discuss the relationship among thermodynamic
reversibility, logical reversibility, and heat emission in the context of the
Landauer principle and clarify that these three concepts are fundamentally
distinct to each other. We also discuss thermodynamics of measurement and
feedback control by Maxwell's demon. We clarify that the demon and the second
law are indeed consistent in the measurement and the feedback processes
individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.),
"Energy Limits in Computation: A Review of Landauer's Principle, Theory and
Experiments
The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III
The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with
new instrumentation and new surveys focused on Galactic structure and chemical
evolution, measurements of the baryon oscillation feature in the clustering of
galaxies and the quasar Ly alpha forest, and a radial velocity search for
planets around ~8000 stars. This paper describes the first data release of
SDSS-III (and the eighth counting from the beginning of the SDSS). The release
includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap,
bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a
third of the Celestial Sphere. All the imaging data have been reprocessed with
an improved sky-subtraction algorithm and a final, self-consistent photometric
recalibration and flat-field determination. This release also includes all data
from the second phase of the Sloan Extension for Galactic Understanding and
Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars
at both high and low Galactic latitudes. All the more than half a million
stellar spectra obtained with the SDSS spectrograph have been reprocessed
through an improved stellar parameters pipeline, which has better determination
of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from
submitted version
- …
