50,472 research outputs found
A Laplace Transform Method for Molecular Mass Distribution Calculation from Rheometric Data
Polydisperse linear polymer melts can be microscopically described by the
tube model and fractal reptation dynamics, while on the macroscopic side the
generalized Maxwell model is capable of correctly displaying most of the
rheological behavior. In this paper, a Laplace transform method is derived and
different macroscopic starting points for molecular mass distribution
calculation are compared to a classical light scattering evaluation. The
underlying assumptions comprise the modern understanding on polymer dynamics in
entangled systems but can be stated in a mathematically generalized way. The
resulting method is very easy to use due to its mathematical structure and it
is capable of calculating multimodal molecular mass distributions of linear
polymer melts
The periodicity in the consumption of oxygen in Asellus aquaticus [Translation from: Vestnik ceskoslovenske zoologicke Spolecnosti, 15, 1, 89-97, 1951]
The consumption of oxygen in Asellus aquaticus was measured to find if there existed a periodicity in the consumption of oxygen and how this showed itself during the course of the day, year and in various experimental conditions. From the figures obtained comparative values were calculated and from these curves were plotted of the changes in the consumption of oxygen during the day and year
Full-depth Coadds of the WISE and First-year NEOWISE-Reactivation Images
The Near Earth Object Wide-field Infrared Survey Explorer (NEOWISE)
Reactivation mission released data from its first full year of observations in
2015. This data set includes ~2.5 million exposures in each of W1 and W2,
effectively doubling the amount of WISE imaging available at 3.4 and 4.6
microns relative to the AllWISE release. We have created the first ever
full-sky set of coadds combining all publicly available W1 and W2 exposures
from both the AllWISE and NEOWISE-Reactivation (NEOWISER) mission phases. We
employ an adaptation of the unWISE image coaddition framework (Lang 2014),
which preserves the native WISE angular resolution and is optimized for forced
photometry. By incorporating two additional scans of the entire sky, we not
only improve the W1/W2 depths, but also largely eliminate time-dependent
artifacts such as off-axis scattered moonlight. We anticipate that our new
coadds will have a broad range of applications, including target selection for
upcoming spectroscopic cosmology surveys, identification of distant/massive
galaxy clusters, and discovery of high-redshift quasars. In particular, our
full-depth AllWISE+NEOWISER coadds will be an important input for the Dark
Energy Spectroscopic Instrument (DESI) selection of luminous red galaxy and
quasar targets. Our full-depth W1/W2 coadds are already in use within the DECam
Legacy Survey (DECaLS) and Mayall z-band Legacy Survey (MzLS) reduction
pipelines. Much more work still remains in order to fully leverage NEOWISER
imaging for astrophysical applications beyond the solar system.Comment: coadds available at http://unwise.me, zoomable full-sky rendering at
http://legacysurvey.org/viewe
Resistivity studies under hydrostatic pressure on a low-resistance variant of the quasi-2D organic superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br: quest for intrinsic scattering contributions
Resistivity measurements have been performed on a low (LR)- and high
(HR)-resistance variant of the kappa-(BEDT-TTF)_2Cu[N(CN)_2]Br superconductor.
While the HR sample was synthesized following the standard procedure, the LR
crystal is a result of a somewhat modified synthesis route. According to their
residual resistivities and residual resistivity ratios, the LR crystal is of
distinctly superior quality. He-gas pressure was used to study the effect of
hydrostatic pressure on the different transport regimes for both variants. The
main results of these comparative investigations are (i) a significant part of
the inelastic-scattering contribution, which causes the anomalous rho(T)
maximum in standard HR crystals around 90 K, is sample dependent, i.e.
extrinsic in nature, (ii) the abrupt change in rho(T) at T* approx. 40 K from a
strongly temperature-dependent behavior at T > T* to an only weakly T-dependent
rho(T) at T < T* is unaffected by this scattering contribution and thus marks
an independent property, most likely a second-order phase transition, (iii)
both variants reveal a rho(T) proportional to AT^2 dependence at low
temperatures, i.e. for T_c < T < T_0, although with strongly sample-dependent
coefficients A and upper bounds for the T^2 behavior measured by T_0. The
latter result is inconsistent with the T^2 dependence originating from coherent
Fermi-liquid excitations.Comment: 8 pages, 6 figure
Unstable resonator cavity semiconductor lasers
GaAs heterostructure lasers with unstable resonator cavities were demonstrated for the first time with both curved mirrors fabricated by etching. Typical output powers of 0.35 W were observed in a stable, highly coherent lateral mode. The laser operated stably in a single longitudinal mode over a large range of injection currents. The external quantum efficiency was 70% of that of a similar laser with both mirror facets cleaved implying good output coupling of the energy from the entire region
- …
