35,969 research outputs found
Drug treatment of hypertension: focus on vascular health
Hypertension, the most common preventable risk factor for cardiovascular disease and death, is a growing health burden. Serious cardiovascular complications result from target organ damage including cerebrovascular disease, heart failure, ischaemic heart disease and renal failure. While many systems contribute to blood pressure (BP) elevation, the vascular system is particularly important because vascular dysfunction is a cause and consequence of hypertension. Hypertension is characterised by a vascular phenotype of endothelial dysfunction, arterial remodelling, vascular inflammation and increased stiffness. Antihypertensive drugs that influence vascular changes associated with high BP have greater efficacy for reducing cardiovascular risk than drugs that reduce BP, but have little or no effect on the adverse vascular phenotype. Angiotensin converting enzyme ACE inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) improve endothelial function and prevent vascular remodelling. Calcium channel blockers also improve endothelial function, although to a lesser extent than ACEIs and ARBs. Mineralocorticoid receptor blockers improve endothelial function and reduce arterial stiffness, and have recently become more established as antihypertensive drugs. Lifestyle factors are essential in preventing the adverse vascular changes associated with high BP and reducing associated cardiovascular risk. Clinicians and scientists should incorporate these factors into treatment decisions for patients with high BP, as well as in the development of new antihypertensive drugs that promote vascular health
Quantum critical behaviour of the plateau-insulator transition in the quantum Hall regime
High-field magnetotransport experiments provide an excellent tool to
investigate the plateau-insulator phase transition in the integral quantum Hall
effect. Here we review recent low-temperature high-field magnetotransport
studies carried out on several InGaAs/InP heterostructures and an InGaAs/GaAs
quantum well. We find that the longitudinal resistivity near the
critical filling factor ~ 0.5 follows the universal scaling law
, where . The critical exponent equals ,
which indicates that the plateau-insulator transition falls in a non-Fermi
liquid universality class.Comment: 8 pages, accepted for publication in Proceedings of the Yamada
Conference LX on Research in High Magnetic Fields (August 16-19, 2006,
Sendai
Electron-Transport Properties of Na Nanowires under Applied Bias Voltages
We present first-principles calculations on electron transport through Na
nanowires at finite bias voltages. The nanowire exhibits a nonlinear
current-voltage characteristic and negative differential conductance. The
latter is explained by the drastic suppression of the transmission peaks which
is attributed to the electron transportability of the negatively biased plinth
attached to the end of the nanowire. In addition, the finding that a voltage
drop preferentially occurs on the negatively biased side of the nanowire is
discussed in relation to the electronic structure and conduction.Comment: 4 pages, 6 figure
Binary neutron star mergers: a jet engine for short gamma-ray bursts
We perform magnetohydrodynamic simulations in full general relativity (GRMHD)
of quasi-circular, equal-mass, binary neutron stars that undergo merger. The
initial stars are irrotational, polytropes and are magnetized. We explore
two types of magnetic-field geometries: one where each star is endowed with a
dipole magnetic field extending from the interior into the exterior, as in a
pulsar, and the other where the dipole field is initially confined to the
interior. In both cases the adopted magnetic fields are initially dynamically
unimportant. The merger outcome is a hypermassive neutron star that undergoes
delayed collapse to a black hole (spin parameter )
immersed in a magnetized accretion disk. About ms following merger, the region above the black hole poles
becomes strongly magnetized, and a collimated, mildly relativistic outflow ---
an incipient jet --- is launched. The lifetime of the accretion disk, which
likely equals the lifetime of the jet, is s. In contrast to black hole--neutron star mergers, we find
that incipient jets are launched even when the initial magnetic field is
confined to the interior of the stars.Comment: 6 pages, 3 figures, 1 table, matches published versio
Single-particle and Interaction Effects on the Cohesion and Transport and Magnetic Properties of Metal Nanowires at Finite Voltages
The single-particle and interaction effects on the cohesion, electronic
transport, and some magnetic properties of metallic nanocylinders have been
studied at finite voltages by using a generalized mean-field electron model.
The electron-electron interactions are treated in the self-consistent Hartree
approximation. Our results show the single-particle effect is dominant in the
cohesive force, while the nonzero magnetoconductance and magnetotension
coefficients are attributed to the interaction effect. Both single-particle and
interaction effects are important to the differential conductance and magnetic
susceptibility.Comment: 5 pages, 6 figure
- …
