4,405 research outputs found
Low-energy models for correlated materials: bandwidth renormalization from Coulombic screening
We provide a prescription for constructing Hamiltonians representing the low
energy physics of correlated electron materials with dynamically screened
Coulomb interactions. The key feature is a renormalization of the hopping and
hybridization parameters by the processes that lead to the dynamical screening.
The renormalization is shown to be non-negligible for various classes of
correlated electron materials. The bandwidth reduction effect is necessary for
connecting models to materials behavior and for making quantitative predictions
for low-energy properties of solids.Comment: 4 pages, 2 figure
Quantum Langevin theory of excess noise
In an earlier work [P. J. Bardroff and S. Stenholm], we have derived a fully
quantum mechanical description of excess noise in strongly damped lasers. This
theory is used here to derive the corresponding quantum Langevin equations.
Taking the semi-classical limit of these we are able to regain the starting
point of Siegman's treatment of excess noise [Phys. Rev. A 39, 1253 (1989)].
Our results essentially constitute a quantum derivation of his theory and allow
some generalizations.Comment: 9 pages, 0 figures, revte
Non-perturbatively renormalised light quark masses from a lattice simulation with N_f=2
We present results for the light quark masses obtained from a lattice QCD
simulation with N_f=2 degenerate Wilson dynamical quark flavours. The sea quark
masses of our lattice, of spacing a ~ 0.06 fm, are relatively heavy, i.e., they
cover the range corresponding to 0.60 <~ M_P/M_V <~ 0.75. After implementing
the non-perturbative RI-MOM method to renormalise quark masses, we obtain
m_{ud}^{MS}(2 GeV)=4.3 +- 0.4^{+1.1}_{-0} MeV, and m_s^{MS}(2 GeV)=101 +-
8^{+25}_{-0} MeV, which are about 15% larger than they would be if renormalised
perturbatively. In addition, we show that the above results are compatible with
those obtained in a quenched simulation with a similar lattice.Comment: 18 pages, 5 figure
Coulomb Energy, Remnant Symmetry, and the Phases of Non-Abelian Gauge Theories
We show that the confining property of the one-gluon propagator, in Coulomb
gauge, is linked to the unbroken realization of a remnant gauge symmetry which
exists in this gauge. An order parameter for the remnant gauge symmetry is
introduced, and its behavior is investigated in a variety of models via
numerical simulations. We find that the color-Coulomb potential, associated
with the gluon propagator, grows linearly with distance both in the confined
and - surprisingly - in the high-temperature deconfined phase of pure
Yang-Mills theory. We also find a remnant symmetry-breaking transition in SU(2)
gauge-Higgs theory which completely isolates the Higgs from the
(pseudo)confinement region of the phase diagram. This transition exists despite
the absence, pointed out long ago by Fradkin and Shenker, of a genuine
thermodynamic phase transition separating the two regions.Comment: 18 pages, 19 figures, revtex
Recommended from our members
Imperial fascism : ideology, practice, and transmission in the Mediterranean, 1934-1943
This study seeks to explore the nature of imperial fascism, particularly those projects carried out by Italian and French fascists and authoritarians in North Africa from 1934 to 1943. In the wake of world war and a worldwide depression, these fascists were mindful of the limitations of the territorial nation-state, and believed that imperial structures would have to be created and maintained in order to protect the sovereignty of their nations. A shared set of ideas about the past and future of the Mediterranean provided French and Italian rightists an ideological opportunity to cooperate, but geopolitical differences and national egoism ensured that each would go their own way. With the failure of the so-called “Latin union”, both the French and Italian rightists sought to convince North Africans that only the far-right could bring about modernity while protecting Islam from secularism and communist atheism. While most North Africans rejected the fascist advances, some responded positively for a variety of reasons, though generally in ways that failed to correspond to the fascist visions of a new geopolitical order. In a bid to show their respect for Islam, fascists also employed several strategies to govern North African Muslims; foremost of these were the attempts to integrate the elites into youth organizations and a greater involvement in supporting Islamic practices in ways that depoliticized religion and linked it to the state. The governing techniques, despite attenuating some critiques of colonialism, did little to stem the growing desire for independence. Furthermore, the fascist rejection of liberal norms and values was unacceptable to most North Africans who hoped to either greatly reform colonial structures or to gain self-determination. Though French and Italians failed to legitimize their imperial projects, studying their attempts highlights the various ways in which fascists adjusted their ideas and practices in order to carry out transnational and imperial politics.Histor
Photoproduction of eta mesons from the neutron: cross sections and double polarization observable E
Photoproduction of mesons from neutrons} \abstract{Results from
measurements of the photoproduction of mesons from quasifree protons and
neutrons are summarized. The experiments were performed with the CBELSA/TAPS
detector at the electron accelerator ELSA in Bonn using the
decay. A liquid deuterium target was used for the
measurement of total cross sections and angular distributions. The results
confirm earlier measurements from Bonn and the MAMI facility in Mainz about the
existence of a narrow structure in the excitation function of . The current angular distributions show a forward-backward
asymmetry, which was previously not seen, but was predicted by model
calculations including an additional narrow state. Furthermore, data
obtained with a longitudinally polarized, deuterated butanol target and a
circularly polarized photon beam were analyzed to determine the double
polarization observable . Both data sets together were also used to extract
the helicity dependent cross sections and . The
narrow structure in the excitation function of
appears associated with the helicity-1/2 component of the reaction
Ultrathin 2 nm gold as ideal impedance-matched absorber for infrared light
Thermal detectors are a cornerstone of infrared (IR) and terahertz (THz)
technology due to their broad spectral range. These detectors call for suitable
broad spectral absorbers with minimalthermal mass. Often this is realized by
plasmonic absorbers, which ensure a high absorptivity butonly for a narrow
spectral band. Alternativly, a common approach is based on impedance-matching
the sheet resistance of a thin metallic film to half the free-space impedance.
Thereby, it is possible to achieve a wavelength-independent absorptivity of up
to 50 %, depending on the dielectric properties of the underlying substrate.
However, existing absorber films typicallyrequire a thickness of the order of
tens of nanometers, such as titanium nitride (14 nm), whichcan significantly
deteriorate the response of a thermal transducers. Here, we present the
application of ultrathin gold (2 nm) on top of a 1.2 nm copper oxide seed layer
as an effective IR absorber. An almost wavelength-independent and long-time
stable absorptivity of 47(3) %, ranging from 2 m to 20 m, could be
obtained and is further discussed. The presented gold thin-film represents
analmost ideal impedance-matched IR absorber that allows a significant
improvement of state-of-the-art thermal detector technology
Quantum phase transitions of light
Recently, condensed matter and atomic experiments have reached a length-scale
and temperature regime where new quantum collective phenomena emerge. Finding
such physics in systems of photons, however, is problematic, as photons
typically do not interact with each other and can be created or destroyed at
will. Here, we introduce a physical system of photons that exhibits strongly
correlated dynamics on a meso-scale. By adding photons to a two-dimensional
array of coupled optical cavities each containing a single two-level atom in
the photon-blockade regime, we form dressed states, or polaritons, that are
both long-lived and strongly interacting. Our zero temperature results predict
that this photonic system will undergo a characteristic Mott insulator
(excitations localised on each site) to superfluid (excitations delocalised
across the lattice) quantum phase transition. Each cavity's impressive photon
out-coupling potential may lead to actual devices based on these quantum
many-body effects, as well as observable, tunable quantum simulators. We
explicitly show that such phenomena may be observable in micro-machined diamond
containing nitrogen-vacancy colour centres and superconducting microwave
strip-line resonators.Comment: 11 pages, 5 figures (2 in colour
The {\eta}'-carbon potential at low meson momenta
The production of mesons in coincidence with forward-going
protons has been studied in photon-induced reactions on C and on a
liquid hydrogen (LH) target for incoming photon energies of 1.3-2.6 GeV at
the electron accelerator ELSA. The mesons have been identified
via the decay
registered with the CBELSA/TAPS detector system. Coincident protons have been
identified in the MiniTAPS BaF array at polar angles of . Under these kinematic constraints the
mesons are produced with relatively low kinetic energy (
150 MeV) since the coincident protons take over most of the momentum of the
incident-photon beam. For the C-target this allows the determination of the
real part of the -carbon potential at low meson momenta by
comparing with collision model calculations of the kinetic energy
distribution and excitation function. Fitting the latter data for
mesons going backwards in the center-of-mass system yields a potential depth of
V = (44 16(stat)15(syst)) MeV, consistent with earlier
determinations of the potential depth in inclusive measurements for average
momenta of 1.1 GeV/. Within the experimental
uncertainties, there is no indication of a momentum dependence of the
-carbon potential. The LH data, taken as a reference to check
the data analysis and the model calculations, provide differential and integral
cross sections in good agreement with previous results for
photoproduction off the free proton.Comment: 9 pages, 13 figures. arXiv admin note: text overlap with
arXiv:1608.0607
Time delay for one-dimensional quantum systems with steplike potentials
This paper concerns time-dependent scattering theory and in particular the
concept of time delay for a class of one-dimensional anisotropic quantum
systems. These systems are described by a Schr\"{o}dinger Hamiltonian with a potential converging to different limits
and as and respectively. Due to the
anisotropy they exhibit a two-channel structure. We first establish the
existence and properties of the channel wave and scattering operators by using
the modern Mourre approach. We then use scattering theory to show the identity
of two apparently different representations of time delay. The first one is
defined in terms of sojourn times while the second one is given by the
Eisenbud-Wigner operator. The identity of these representations is well known
for systems where vanishes as (). We show
that it remains true in the anisotropic case , i.e. we prove
the existence of the time-dependent representation of time delay and its
equality with the time-independent Eisenbud-Wigner representation. Finally we
use this identity to give a time-dependent interpretation of the
Eisenbud-Wigner expression which is commonly used for time delay in the
literature.Comment: 48 pages, 1 figur
- …
